Advertisement

Structure-guided design of ultrapotent disruptive IgE inhibitors to rapidly terminate acute allergic reactions

  • Luke F. Pennington
    Affiliations
    Department of Structural Biology, Stanford University School of Medicine, Stanford, Calif

    Program in Immunology, Stanford University School of Medicine, Stanford, Calif

    Sean N. Parker Center for Allergy Research at Stanford University, Stanford, Calif
    Search for articles by this author
  • Pascal Gasser
    Affiliations
    Department of Rheumatology and Immunology, Bern University Hospital, Bern, Switzerland

    Department of BioMedical Research, University of Bern, Bern, Switzerland
    Search for articles by this author
  • Daniel Brigger
    Affiliations
    Department of Rheumatology and Immunology, Bern University Hospital, Bern, Switzerland

    Department of BioMedical Research, University of Bern, Bern, Switzerland
    Search for articles by this author
  • Pascal Guntern
    Affiliations
    Department of Rheumatology and Immunology, Bern University Hospital, Bern, Switzerland

    Department of BioMedical Research, University of Bern, Bern, Switzerland
    Search for articles by this author
  • Alexander Eggel
    Correspondence
    Corresponding author: Alexander Eggel, PhD, Department of BioMedical Research, University of Bern, Sahlihaus 2, Room 108, 3010 Bern, Switzerland.
    Affiliations
    Department of Rheumatology and Immunology, Bern University Hospital, Bern, Switzerland

    Department of BioMedical Research, University of Bern, Bern, Switzerland
    Search for articles by this author
  • Theodore S. Jardetzky
    Correspondence
    Theodore S. Jardetzky, PhD, Department of Structural Biology, Stanford University School of Medicine, Fairchild Building, Room 309, Stanford, CA 94305.
    Affiliations
    Department of Structural Biology, Stanford University School of Medicine, Stanford, Calif

    Program in Immunology, Stanford University School of Medicine, Stanford, Calif

    Sean N. Parker Center for Allergy Research at Stanford University, Stanford, Calif
    Search for articles by this author

      Background

      Anaphylaxis represents one of the most severe and fatal forms of allergic reactions. Like most other allergies, it is caused by activation of basophils and mast cells by allergen-mediated cross-linking of IgE bound to its high-affinity receptor, FcεRI, on the cell surface. The systemic release of soluble mediators induces an inflammatory cascade, rapidly causing symptoms with peak severity in minutes to hours after allergen exposure. Primary treatment for anaphylaxis consists of immediate intramuscular administration of adrenaline.

      Objective

      While adrenaline alleviates life-threatening symptoms of an anaphylactic reaction, there are currently no disease-modifying interventions available. We sought to develop potent and fast-acting IgE inhibitors with the potential to rapidly terminate acute allergic reactions.

      Methods

      Using affinity maturation by yeast display and structure-guided molecular engineering, we generated 3 optimized disruptive IgE inhibitors based on designed ankyrin repeat proteins and assessed their ability to actively remove IgE from allergic effector cells in vitro as well as in vivo in mice.

      Results

      The engineered IgE inhibitors rapidly dissociate preformed IgE:FcεRI complexes, terminate IgE-mediated signaling in preactivated human blood basophils in vitro, and shut down preinitiated allergic reactions and anaphylaxis in mice in vivo.

      Conclusions

      Fast-acting disruptive IgE inhibitors demonstrate the feasibility of developing kinetically optimized inhibitors for the treatment of anaphylaxis and the rapid desensitization of allergic individuals.

      Graphical abstract

      Key words

      Abbreviations used:

      bIgE-Fc2-4 (Biotinylated IgE-Fc2-4), BMMC (Bone marrow–derived mast cells), BMMCtg (Bone marrow–derived mast cells from transgenic mice expressing human high-affinity IgE receptor), DARPin (Designed ankyrin repeat protein), DC50 (Half-maximal disruptive concentrations), FcγRIIb (Low-affinity immunoglobulin gamma Fc region receptor II-b), FcεRI (High affinity IgE receptor), JW8-IgE (4-Hydroxy-3-iodo-5-nitrophenylacetyl hapten–specific IgE), KIH (Knobs-in-holes heterodimeric IgG1-Fc), NIP-BSA (4-Hydroxy-3-iodo-5-nitrophenylacetyl hapten conjugated to bovine serum albumin), OVA (Ovalbumin), PBS (Phosphate-buffered saline), SPR (Surface plasmon resonance)
      To read this article in full you will need to make a payment

      References

        • Yu J.E.
        • Lin R.Y.
        The epidemiology of anaphylaxis.
        Clin Rev Allergy Immunol. 2015; 54: 366-374
        • Muraro A.
        • Roberts G.
        • Worm M.
        • Bilò M.B.
        • Brockow K.
        • Fernandez-Rivas M.
        • et al.
        Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology.
        Allergy. 2014; 69: 1026-1045
        • Simons F.E.R.
        • Ebisawa M.
        • Sánchez-Borges M.
        • Thong B.Y.
        • Worm M.
        • Tanno L.K.
        • et al.
        2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines.
        World Allergy Organ J. 2015; 8: 1-16
        • Turner P.J.
        • Jerschow E.
        • Umasunthar T.
        • Lin R.
        • Campbell D.E.
        • Boyle R.J.
        Fatal anaphylaxis: mortality rate and risk factors.
        J Allergy Clin Immunol Pract. 2017; 5: 1169-1178
        • Finkelman F.D.
        Anaphylaxis: lessons from mouse models.
        J Allergy Clin Immunol. 2007; 120: 506-515
        • Kemp S.F.
        • Lockey R.F.
        Anaphylaxis: a review of causes and mechanisms.
        J Allergy Clin Immunol. 2002; 110: 341-348
        • Metcalfe D.D.
        • Peavy R.D.
        • Gilfillan A.M.
        Mechanisms of mast cell signaling in anaphylaxis.
        J Allergy Clin Immunol. 2009; 124: 639-646
        • Reber L.L.
        • Hernandez J.D.
        • Galli S.J.
        The pathophysiology of anaphylaxis.
        J Allergy Clin Immunol. 2017; 140: 335-348
        • Sampson H.A.
        • Muñoz-Furlong A.
        • Bock S.A.
        • Schmitt C.
        • Bass R.
        • Chowdhury B.A.
        • et al.
        Symposium on the definition and management of anaphylaxis: summary report.
        J Allergy Clin Immunol. 2005; 115: 584-591
        • Busse W.
        • Corren J.
        • Lanier B.Q.
        • McAlary M.
        • Fowler-Taylor A.
        • Cioppa G.D.
        • et al.
        Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma.
        J Allergy Clin Immunol. 2001; 108: 184-190
        • Chang T.W.
        • Chen C.
        • Lin C.J.
        • Metz M.
        • Church M.K.
        • Maurer M.
        The potential pharmacologic mechanisms of omalizumab in patients with chronic spontaneous urticaria.
        J Allergy Clin Immunol. 2015; 135: 337-342
        • Gasser P.
        • Eggel A.
        Targeting IgE in allergic disease.
        Curr Opin Immunol. 2018; 54: 86-92
        • Holgate S.
        • Buhl R.
        • Bousquet J.
        • Smith N.
        • Panahloo Z.
        • Jimenez P.
        The use of omalizumab in the treatment of severe allergic asthma: a clinical experience update.
        Respir Med. 2009; 103: 1098-1113
        • Metz M.
        • Ohanyan T.
        • Church M.K.
        • Maurer M.
        Omalizumab is an effective and rapidly acting therapy in difficult-to-treat chronic urticaria: a retrospective clinical analysis.
        J Dermatol Sci. 2014; 73: 57-62
        • Kim B.
        • Eggel A.
        • Tarchevskaya S.S.
        • Vogel M.
        • Prinz H.
        • Jardetzky T.S.
        Accelerated disassembly of IgE-receptor complexes by a disruptive macromolecular inhibitor.
        Nature. 2012; 491: 613-617
        • Binz H.K.
        • Stumpp M.T.
        • Forrer P.
        • Amstutz P.
        • Plückthun A.
        Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins.
        J Mol Biol. 2003; 332: 489-503
        • Binz H.K.
        • Amstutz P.
        • Kohl A.
        • Stumpp M.T.
        • Briand C.
        • Forrer P.
        • et al.
        High-affinity binders selected from designed ankyrin repeat protein libraries.
        Nat Biotechnol. 2004; 22: 575-582
        • Eggel A.
        • Baravalle G.
        • Hobi G.
        • Kim B.
        • Buschor P.
        • Forrer P.
        • et al.
        Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells.
        J Allergy Clin Immunol. 2014; 133: 1709-1719.e8
        • Garman S.C.
        • Wurzburg B.A.
        • Tarchevskaya S.S.
        • Kinet J.P.
        • Jardetzky T.S.
        Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha.
        Nature. 2000; 406: 259-266
        • Wurzburg B.A.
        • Garman S.C.
        • Jardetzky T.S.
        Structure of the human IgE-Fc C epsilon 3-C epsilon 4 reveals conformational flexibility in the antibody effector domains.
        Immunity. 2000; 13: 375-385
        • Wurzburg B.A.
        • Kim B.
        • Tarchevskaya S.S.
        • Eggel A.
        • Vogel M.
        • Jardetzky T.S.
        An engineered disulfide bond reversibly traps the IgE-Fc3-4 in a closed, nonreceptor binding conformation.
        J Biol Chem. 2012; 287: 36251-36257
        • Dhaliwal B.
        • Yuan D.
        • Pang M.O.Y.
        • Henry A.J.
        • Cain K.
        • Oxbrow A.
        • et al.
        Crystal structure of IgE bound to its B-cell receptor CD23 reveals a mechanism of reciprocal allosteric inhibition with high affinity receptor Fc RI.
        Proc Natl Acad Sci U S A. 2012; 109: 12686-12691
        • Borthakur S.
        • Hibbert R.G.
        • Pang M.O.
        • Yahya N.
        • Bax H.J.
        • Kao M.W.
        • et al.
        Mapping of the CD23 binding site on immunoglobulin E (IgE) and allosteric control of the IgE-Fc epsilonRI interaction.
        J Biol Chem. 2012; 287: 31457-31461
        • Eggel A.
        • Buschor P.
        • Baumann M.J.
        • Amstutz P.
        • Stadler B.M.
        • Vogel M.
        Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin-Fc fusion protein.
        Allergy. 2011; 66: 961-968
        • Zellweger F.
        • Gasser P.
        • Brigger D.
        • Buschor P.
        • Vogel M.
        • Eggel A.
        A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses.
        Allergy. 2016; 72: 1174-1183
        • Malbec O.
        • Cassard L.
        • Albanesi M.
        • Jönsson F.
        • Mancardi D.
        • Chicanne G.
        • et al.
        Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils.
        Sci Signal. 2016; 9 (ra126-6)
        • Suzuki T.
        • Ishii-Watabe A.
        • Tada M.
        • Kobayashi T.
        • Kanayasu-Toyoda T.
        • Kawanishi T.
        • et al.
        Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.
        J Immunol. 2010; 184: 1968-1976
        • Unverdorben F.
        • Richter F.
        • Hutt M.
        • Seifert O.
        • Malinge P.
        • Fischer N.
        • et al.
        Pharmacokinetic properties of IgG and various Fc fusion proteins in mice.
        MAbs. 2016; 8: 120-128
        • Zhang Z.
        • Hener P.
        • Frossard N.
        • Kato S.
        • Metzger D.
        • Li M.
        • et al.
        Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma.
        Proc Natl Acad Sci U S A. 2009; 106: 1536-1541
        • Noti M.
        • Kim B.S.
        • Siracusa M.C.
        • Rak G.D.
        • Kubo M.
        • Moghaddam A.E.
        • et al.
        Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis.
        J Allergy Clin Immunol. 2014; 133: 1390-1396
        • Noti M.
        • Wojno E.D.T.
        • Kim B.S.
        • Siracusa M.C.
        • Giacomin P.R.
        • Nair M.G.
        • et al.
        Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis.
        Nat Med. 2013; 19: 1-11
        • Miura K.
        • Schroeder J.T.
        • Hubbard W.C.
        • MacGlashan D.W.
        Extracellular signal-regulated kinases regulate leukotriene C4 generation, but not histamine release or IL-4 production from human basophils.
        J Immunol. 1999; 162: 4198-4206
        • Redrup A.C.
        • Howard B.P.
        • MacGlashan D.W.
        • Kagey-Sobotka A.
        • Lichtenstein L.M.
        • Schroeder J.T.
        Differential regulation of IL-4 and IL-13 secretion by human basophils: their relationship to histamine release in mixed leukocyte cultures.
        J Immunol. 1998; 160: 1957-1964
        • Gibbs B.F.
        • HAAS H.
        • Falcone F.H.
        • Albrecht C.
        • Vollrath I.B.
        • Noll T.
        • et al.
        Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation.
        Eur J Immunol. 1996; 26: 2493-2498
        • White M.
        Mediators of inflammation and the inflammatory process.
        J Allergy Clin Immunol. 1999; 103: S378-S381
        • Bruhns P.
        Properties of mouse and human IgG receptors and their contribution to disease models.
        Blood. 2012; 119: 5640-5649
        • Gaudenzio N.
        • Sibilano R.
        • Marichal T.
        • Starkl P.
        • Reber L.L.
        • Cenac N.
        • et al.
        Different activation signals induce distinct mast cell degranulation strategies.
        J Clin Invest. 2016; 126: 3981-3998
        • Lorentz A.
        • Schwengberg S.
        • Sellge G.
        • Manns M.P.
        • Bischoff S.C.
        Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4.
        J Immunol. 2000; 164: 43-48
        • Hutchinson L.E.
        • McCloskey M.A.
        Fc epsilon RI–mediated induction of nuclear factor of activated T-cells.
        J Biol Chem. 1995; 270: 16333-16338
        • Ryzhov S.
        • Goldstein A.E.
        • Matafonov A.
        • Zeng D.
        • Biaggioni I.
        • Feoktistov I.
        Adenosine-activated mast cells induce IgE synthesis by B lymphocytes: an A2B-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma.
        J Immunol. 2004; 172: 7726-7733
        • Asrat S.
        • Kaur N.
        • Liu X.
        • Ben L.H.
        • Kajimura D.
        • Murphy A.J.
        • et al.
        Chronic allergen exposure drives accumulation of long-lived IgE plasma cells in the bone marrow, giving rise to serological memory.
        Sci Immunol. 2020; 5eaav8402
        • Kunimoto D.
        • Yoon Y.H.
        • Wykoff C.C.
        • Chang A.
        • Khurana R.N.
        • Maturi R.K.
        • et al.
        Efficacy and safety of abicipar in neovascular age-related macular degeneration: 52-week results of phase 3 randomized controlled study.
        Ophthalmology. 2020; 127: 1331-1344
        • Walser M.
        • Rothenberger S.
        • Hurdiss D.L.
        • Schlegel A.
        • Calabro V.
        • Fontaine S.
        • et al.
        Highly potent anti–SARS-CoV-2 multi-DARPin therapeutic candidates.
        bioRxiv. 2020; 584 (2020.08.25.256339)
        • Stumpp M.T.
        • Dawson K.M.
        • Binz H.K.
        Beyond antibodies: the DARPin® drug platform.
        BioDrugs. 2020; 34: 423-433
        • Steiner D.
        • Merz F.W.
        • Sonderegger I.
        • Gulotti-Georgieva M.
        • Villemagne D.
        • Phillips D.J.
        • et al.
        Half-life extension using serum albumin-binding DARPin® domains.
        Protein Eng Des Sel. 2017; 30: 583-591