Editorial

Anaphylaxis—moving beyond severity…

Aisling Stafford, MD, Nandinee Patel, MD, and Paul J. Turner, FRCPCH, PhD London, United Kingdom

Key words: Anaphylaxis, food allergy, severity score

Managing patients at risk of anaphylaxis involves multiple individuals and organizations: patients and their caregivers; health care professionals; researchers; regulatory authorities; and for food allergy, food businesses. The accurate assessment and communication of reaction severity between these different stakeholders is key to management. However, severity can mean different things to different stakeholders (Table I).

Numerous severity grading systems have been developed to help address some of these issues; however, there is a lack of consensus on how to define severity, particularly with respect to food allergy.1-3 In this issue of the Journal of Allergy and Clinical Immunology, Dribin et al describe a severity grading system for acute allergic reactions that is generated by a 21-member panel through a Delphi consensus process.4 There are a number of important principles identified and supported by the panel, including acknowledgment that severity is a continuum and that an allergic reaction can have different phases (as is the case for biphasic reactions), each with differing severities. The explanatory detail with respect to specific symptoms is also welcome.

There are also some important “meta-issues” that need unpacking. First, this is the latest of many severity scores that have been published in the literature.5-7 Some were designed to be used for trigger-specific reactions but have been subsequently applied to reactions irrespective of trigger. This causes difficulties; for example, because Ring and Messmer proposed a system that was originally intended for drug-induced reactions, in their system vomiting is described as a relatively severe symptom. However, emesis is very common during food-induced reactions, and because vomiting is almost certainly a local response of the gut to the presence of a food allergen, it is not a strong indicator of severity. The Ring and Messmer score therefore overstates severity when applied to food-induced reactions.

This example highlights the difficulties of a one-size-fits-all approach for severity grading. Gastrointestinal symptoms are common manifestations of food-induced reactions. This is why the clinical criteria used to define anaphylaxis in the United Kingdom and Australia do not generally include gastrointestinal symptoms (in the context of a venom-induced reaction, however, such symptoms do imply a significant systemic reaction).8 In contrast, in North America and parts of Europe, the clinical criteria used are aligned with those proposed by the National Institute of Allergy and Infectious Diseases (NIAID) in 2005, in which “persistent gastrointestinal symptoms (eg, crampy abdominal pain, vomiting)” together with cutaneous symptoms can constitute anaphylaxis.9 However, there is no consensus as to what constitutes persistent gastrointestinal symptoms; for example, does an individual with persistent nausea and mild cutaneous symptoms qualify as experiencing anaphylaxis? This ambiguity results in reactions being classified as anaphylaxis by some individuals but not by others, depending on how the NIAID criteria are interpreted. This affects not only the use of epinephrine but also the evaluation of treatment success (because one would expect milder reactions to have a better response to epinephrine); this is a major confounder in anaphylaxis research.

Dribin et al suggest that a severity score not dictate treatment, which is an argument that is not without merit. There is, however, a clear link between assignment of severity and diagnosis of anaphylaxis. In the proposed scoring system, gastrointestinal symptoms do not loom large as a feature of severity; therefore, one might interpret Dribin et al as implying that the current inclusion of gastrointestinal symptoms in the NIAID criteria poses difficulties. The authors present an even greater paradox: that “a patient with isolated upper airway obstruction following Hymenoptera envenomation would be categorized as having a nonanaphylactic grade 5 allergic reaction”; and yet, on the basis of the NIAID criteria, such a reaction with severe laryngeal obstruction would not constitute anaphylaxis (and arguably, therefore not warrant treatment with epinephrine). This is similar to a not uncommon scenario in which patients undergoing oral immunotherapy develop isolated wheeze following a dose (without any other explanation). Such a reaction does not meet the NIAID criteria for anaphylaxis, and therefore might not be treated with epinephrine - something that can clearly compromise patient safety. To address at least some of these concerns, the World Allergy Organization recently proposed new clinical criteria for the diagnosis of anaphylaxis (Table II).9 Although these criteria were endorsed by 50 member societies of the World Allergy Organization,1 there is an apparent inertia in their being adopted widely to inform both clinical allergy and research. Dribin et al imply that a critical review of the NIAID criteria is not only timely but overdue. After all, it is completely logical for a severity grading system to align with a clinical definition of anaphylaxis (used to indicate the need for epinephrine treatment).

Whether a single severity score for acute allergic reactions is achievable is unclear. Severity gradings must be sensitive to the underlying purpose. If their purpose is to guide acute treatment, there are already simple definitions (such as the airway/breathing/consciousness mnemonic) to guide epinephrine use; a

From the National Heart & Lung Institute, Imperial College London. Supported through the National Institute for Health Research Biomedical Research Centre based at the Imperial College Healthcare National Health Service Trust and Imperial College London [to N.P. and P.J.T.]. The views expressed in this article are those of the author(s) and do not necessarily reflect those of the National Health Service, National Institute for Health Research, or Department of Health. Disclosure of potential conflict of interest: P. J. Turner reports personal fees from the UK Food Standards Agency, Aimmune Therapeutics, Allergenis, and ILSI Europe outside the submitted work. The rest of the authors declare that they have no relevant conflicts of interest.

Received for publication February 6, 2021; revised April 9, 2021; accepted for publication April 14, 2021. Available online April 23, 2021.

Corresponding author: Paul Turner, FRCPCH, PhD, National Heart & Lung Institute, Imperial College London, Norfolk Place, London, W2 1PG. E-mail: p.turner@imperial.ac.uk.

complicated severity score is not only unnecessary but might delay treatment and cause harm. If the criteria’s purpose is to assess the response to an intervention (such as allergen desensitization or anti-IgE therapy), then ample evidence exists that a 5-grade severity score confers insufficient discrimination, particularly for nonanaphylaxis reactions, which constitute the majority of allergic reactions. Whether severity scores can help define patient phenotypes and thus identify those patients at greater risk of severe reactions remains unclear.

TABLE I. Stakeholders’ perception of severity

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Perception of severity and possible implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with allergy and their caregivers</td>
<td>May underestimate or overestimate severity: parents of children with food allergies may perceive significant skin signs (e.g., facial angioedema) as severe, whereas experienced clinicians recognize that this is a common presentation of reactions in young children. In contrast, parents may attribute wheeze to a viral illness (particularly in a child prone to viral wheeze) and fail to recognize that this indicates anaphylaxis if it is occurring after exposure to a known allergen.</td>
</tr>
<tr>
<td>Emergency caregivers (e.g., paramedics, emergency department staff)</td>
<td>Need to consider long lists of differential diagnoses. May have limited experience, leading to inaccurate diagnosis or inappropriate treatment. Reactions have often resolved by arrival at the hospital, so local staff may not appreciate the potential risks of severe anaphylaxis.</td>
</tr>
<tr>
<td>Family medicine practitioners and pediatrics</td>
<td>May have limited experience of severe reactions, thus leading to undertreatment or overtreatment of reactions.</td>
</tr>
<tr>
<td>Allergy specialists</td>
<td>Trained to evaluate the spectrum of allergic disease, often by retrospective assessment of severity. Often not involved in the provision of acute care.</td>
</tr>
<tr>
<td>Food industry and food regulators</td>
<td>Necessity for objective risk assessment; in practice, severity may be defined as an unscheduled health encounter. Thus, mild reactions presenting at the hospital are classified as more severe than is anaphylaxis managed in the community, which does not present to emergency departments.</td>
</tr>
</tbody>
</table>

Adapted from Turner et al.1

TABLE II. World Allergy Organization–amended criteria for the diagnosis of anaphylaxis

Anaphylaxis is highly likely when any 1 of the following 2 criteria are fulfilled:

1. Acute onset of an illness (in minutes to several hours), with simultaneous involvement of the skin, mucosal tissue, or both (e.g., generalized hives, pruritus or flushing, swollen lips, tongue, and/or uvula) AND at least 1 of the following:
 a. Respiratory compromise (e.g., dyspnea, wheeze–bronchospasm, stridor, reduced peak expiratory flow, hypoxemia);
 b. Reduced blood pressure or associated symptoms of end-organ dysfunction (e.g., hypotonia [collapse], syncope, incontinence);
 c. Severe gastrointestinal symptoms (e.g., severe crampy abdominal pain, repetitive vomiting), especially after exposure to nonfood allergens.

2. Acute onset of hypotension,* bronchospasm,† or laryngeal involvement‡ after exposure to a known or highly probable allergen for that patient (in minutes to several hours), even in the absence of typical skin involvement

*Hypotension is defined as a decrease in systolic blood pressure of more than 30% from that person’s baseline OR (1) infants and children younger than 10 years with a systolic blood pressure less than 70 mm Hg plus 2 times age in years and (2) adults and children older than 10 years with a systolic blood pressure less than 90 mm Hg.
†Excluding lower respiratory symptoms triggered by common inhalant allergens or food allergens that are perceived to cause “inhalational” reactions in the absence of ingestion.
‡Laryngeal symptoms include stridor, vocal changes, and odynophagia.

FIG 1. Approaches taken to develop severity scores involve a balance between expert opinion (“subjectivity”) and the objective use of data.
risk of severe reactions is controversial; such a score would need to include patient perception and opinion, something that is notably absent in the methodology chosen by Dribin et al. Historically, the development of disease severity scores has not, in general, involved patient input. However, severity does have an impact on patients (indeed, the Consortium for Food Allergy Research severity score includes this as a determinant of severity). Severity scores for food allergy inform patient education. Anaphylaxis is poorly recognized by patients, their caregivers, and health care professionals alike. Shared decision making is increasingly well established in allergy practice, and it would therefore seem prudent to include patient and public involvement in the development of severity assessments—at least in the later stages—to guide strategies to improve symptom recognition by patients (and adherence to appropriate management).

Improving anaphylaxis care does not need to be complicated. Having a standardized, internationally agreed on quantitative measure for severity might be useful in facilitating risk communication, both with patients and with industry/regulators. As research into the active treatment of food allergy increases, the need for consistency and translatability in recording results is essential. However, any severity score must be fit for purpose, be informed by patient and clinician experience, and ideally be data-driven to minimize the impact of subjectivity and provide objective validation (Fig 1). In the meantime, the severity score proposed by Dribin et al highlights the inconsistencies and limitations of the NIAID criteria for anaphylaxis. Developing our understanding of the relationship between anaphylaxis definition (and indication for epinephrine treatment) and severity grading of symptoms is essential for further progress in this area. We need to achieve a global consensus on updated anaphylaxis criteria so as to improve anaphylaxis recognition and thus patient care—it is what patients deserve.

REFERENCES