Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33

Published:September 30, 2020DOI:


      Staphylococcus aureus is the dominant infective trigger of atopic dermatitis (AD). How this bacterium drives type 2 allergic pathology in the absence of infection in patients with AD is unclear.


      We sought to identify the S aureus–derived virulence factor(s) that initiates the cutaneous type 2–promoting immune response responsible for AD.


      In vitro human keratinocyte cell culture, ex vivo human skin organ explants, and the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse were used as model systems to assess type 2–promoting immune responses to S aureus. Identification of the bioactive factor was accomplished using fast protein liquid chromatography and mass spectrometry. Bioactivity was confirmed by cloning and expression in an Escherichia coli vector system, and S aureus second immunoglobulin-binding protein (Sbi) mutant strains confirming loss of activity.


      S aureus was unique among staphylococcal species in its ability to induce the rapid release of constitutive IL-33 from human keratinocytes independent of the Toll-like receptor pathway. Using the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse model, we showed that IL-33 was essential for inducing the immune response to S aureus in vivo. By fractionation and candidate testing, we identified Sbi as the predominant staphylococcus-derived virulence factor that directly drives IL-33 release from human keratinocytes. Immunohistology of skin demonstrated that corneodesmosin, a component of corneodesmosomes that form key intercellular adhesive structures in the stratum corneum, was disrupted, resulting in reduction of skin barrier function.


      S aureus–derived Sbi is a unique type 2–promoting virulence factor capable of initiating the type 2–promoting cytokine activity underlying AD.

      Key words

      Abbreviations used:

      AD (Atopic dermatitis), CDSN (Corneodesmosin), CFU (Colony-forming units), DSC-1 (Desmocollin-1), DSG-1 (Desmoglein-1), FPLC (Fast protein liquid chromatography), FSA (Filtered S aureus supernatant), FSE (Filtered S epidermidis supernatant), LiSA (Live S aureus), NC/Tnd (Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain), NHEK (Normal human epidermal keratinocytes), PDHa (Pyruvate dehydrogenase alpha-subunit), Sbi (Second immunoglobulin-binding protein), siRNA (Small-interfering RNA), Spl (Serine-protease-like), TEWL (Transepidermal water loss), TLR (Toll-like receptor), TSLP (Thymic stromal lymphopoietin)
      To read this article in full you will need to make a payment


        • Poulakou G.
        • Lagou S.
        • Tsiodras S.
        What’s new in the epidemiology of skin and soft tissue infections in 2018?.
        Curr Opin Infect Dis. 2019; 32: 77-86
        • Lunjani N.
        • Hlela C.
        • O’Mahony L.
        Microbiome and skin biology.
        Curr Opin Allergy Clin Immunol. 2019; 19: 328-333
        • Esposito S.
        • Noviello S.
        • Leone S.
        Epidemiology and microbiology of skin and soft tissue infections.
        Curr Opin Infect Dis. 2016; 29: 109-115
        • Kim J.
        • Kim B.E.
        • Ahn K.
        • Leung D.Y.M.
        Interactions between atopic dermatitis and Staphylococcus aureus infection: clinical implications.
        Allergy Asthma Immunol Res. 2019; 11: 593-603
        • Paller A.S.
        • Kong H.H.
        • Seed P.
        • Naik S.
        • Scharschmidt T.C.
        • Gallo R.L.
        • et al.
        The microbiome in patients with atopic dermatitis.
        J Allergy Clin Immunol. 2019; 143: 26-35
        • Weidinger S.
        • Novak N.
        Atopic dermatitis.
        Lancet. 2016; 387: 1109-1122
        • Lacey K.A.
        • Geoghegan J.A.
        • McLoughlin R.M.
        The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens.
        Pathogens. 2016; 5
        • Seiti Yamada Yoshikawa F.
        • Feitosa de Lima J.
        • Notomi Sato M.
        • Álefe Leuzzi Ramos Y.
        • Aoki V.
        • Leao Orfali R.
        Exploring the role of Staphylococcus aureus toxins in atopic dermatitis.
        Toxins (Basel). 2019; : 11
        • Al Kindi A.
        • Alkahtani A.M.
        • Nalubega M.
        • El-Chami C.
        • O’Neill C.
        • Arkwright P.D.
        • et al.
        Staphylococcus aureus internalized by skin keratinocytes evade antibiotic killing.
        Front Microbiol. 2019; 10: 2242
        • Askarian F.
        • Wagner T.
        • Johannessen M.
        • Nizel V.
        Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like and C-type lectin (CLR) receptors.
        FEMS Microbiol Rev. 2018; 42: 656-671
        • Leung D.Y.M.
        • Berdyshev E.
        • Goleva E.
        Cutaneous barrier dysfunction in allergic diseases.
        J Allergy Clin Immunol. 2020; 145: 1485-1497
        • Smith F.J.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • Sandilands A.
        • Campbell L.E.
        • Zhao Y.
        • et al.
        Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.
        Nat Genet. 2006; 38: 337-342
        • Honda T.
        • Kabashima K.
        Reconciling innate and acquired immunity in atopic dermatitis.
        J Allergy Clin Immunol. 2020;
        • Simpson E.L.
        • Bieber T.
        • Guttman-Yassky E.
        • Beck L.A.
        • Blauvelt A.
        • Cork M.J.
        • et al.
        Two phase 3 trials of dupilumab versus placebo in atopic dermatitis.
        N Engl J Med. 2016; 375: 2335-2348
        • Geoghegan J.A.
        • Irvine A.D.
        • Foster T.J.
        Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship.
        Trends Microbiol. 2018; 26: 484-497
        • Nakamura Y.
        • Oscherwitz J.
        • Cease K.B.
        • Chan S.M.
        • Muñoz-Planillo R.
        • Hasegawa M.
        • et al.
        Staphylococcus δ-toxin induces allergic skin disease by activating mast cells.
        Nature. 2013; 503: 397-401
        • Casanova J.L.
        • Abel L.
        Human genetics of infectious diseases: unique insights into immunological redundancy.
        Semin Immunol. 2018; 36: 1-12
        • Fischer A.
        • Rausell A.
        What do primary immunodeficiencies tell us about the essentiality/redundancy of immune responses?.
        Semin Immunol. 2018; 36: 13-16
        • Smith E.J.
        • Visai L.
        • Kerrigan S.W.
        • Speziale P.
        • Foster T.J.
        The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus.
        Infect Immun. 2011; 79: 3801-3809
        • Jang H.
        • Matsuda A.
        • Jung K.
        • Karasawa K.
        • Matsuda K.
        • Oida K.
        • et al.
        Skin pH is the master switch of kallikrein 5-mediated skin barrier destruction in a murine atopic dermatitis model.
        J Invest Dermatol. 2016; 136: 127-135
        • Byrd A.L.
        • Deming C.
        • Cassidy S.K.B.
        • Harrison O.J.
        • Ng W.I.
        • Conlan S.
        • et al.
        Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis.
        Sci Transl Med. 2017; 9
        • Fyhrquist N.
        • Muirhead G.
        • Prast-Nielsen S.
        • Jeanmougin M.
        • Olah P.
        • Skoog T.
        • et al.
        Microbe-host interplay in atopic dermatitis and psoriasis.
        Nat Commun. 2019; 10: 4703
        • Moussion C.
        • Ortega N.
        • Girard J.P.
        The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?.
        PLoS One. 2008; 3e3331
        • Lan F.
        • Zhang N.
        • Holtappels G.
        • De Ruyck N.
        • Krysko O.
        • Van Crombruggen K.
        • et al.
        Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines.
        Am J Respir Crit Care Med. 2018; 198: 452-463
        • Jonca N.
        • Guerrin M.
        • Hadjiolova K.
        • Caubet C.
        • Gallinaro H.
        • Simon M.
        • et al.
        Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties.
        J Biol Chem. 2002; 277: 5024-5029
        • Palmer C.N.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • Zhao Y.
        • Liao H.
        • Lee S.P.
        • et al.
        Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.
        Nat Genet. 2006; 38: 441-446
        • Noguchi A.
        • Tominaga M.
        • Takahashi N.
        • Matsuda H.
        • Kamata Y.
        • Umehara Y.
        • et al.
        Differences in therapeutic effects of topically applied corticosteroid and tacrolimus on atopic dermatitis-like symptoms in NC/Nga mice.
        J Dermatol Sci. 2017; 86: 54-62
        • Amagai Y.
        • Matsuda H.
        • Tanaka A.
        Abnormalities in itch sensation and skin barrier function in atopic NC/Tnd mice.
        Biol Pharm Bull. 2013; 36: 1248-1252
        • Matsui K.
        • Nojima Y.
        • Kajiwara Y.
        • Busujima K.
        • Mori Y.
        Topical application of doxycycline inhibits Th2 cell development mediated by Langerhans cells and exerts a therapeutic effect on atopic dermatitis.
        J Pharm Pharm Sci. 2020; 23: 86-99
        • Lowe A.J.
        • Leung D.Y.M.
        • Tang M.L.K.
        • Su J.C.
        • Allen K.J.
        The skin as a target for prevention of the atopic march.
        Ann Allergy Asthma Immunol. 2018; 120: 145-151
        • Chen Y.L.
        • Gutowska-Owsiak D.
        • Hardman C.S.
        • Westmoreland M.
        • MacKenzie T.
        • Cifuentes L.
        • et al.
        Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis.
        Sci Transl Med. 2019; 11
        • Teufelberger A.R.
        • Nordengrün M.
        • Braun H.
        • Maes T.
        • De Grove K.
        • Holtappels G.
        • et al.
        The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D.
        J Allergy Clin Immunol. 2018; 141: 549-559.e7
        • Diep B.A.
        • Gill S.R.
        • Chang R.F.
        • Phan T.H.
        • Chen J.H.
        • Davidson M.G.
        • et al.
        Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus.
        Lancet. 2006; 367: 731-739
        • Berscheid A.
        • Sass P.
        • Weber-Lassalle K.
        • Cheung A.L.
        • Bierbaum G.
        Revisiting the genomes of the Staphylococcus aureus strains NCTC 8325 and RN4220.
        Int J Med Microbiol. 2012; 302: 84-87
        • Jonca N.
        • Caubet C.
        • Guerrin M.
        • Simon M.
        • Serre G.
        Corenodesmosin: structure, function and involvement in pathophysiology.
        Open Dermatol J. 2010; 4: 36-45
        • Stentzel S.
        • Teufelberger A.
        • Nordengrün M.
        • Kolata J.
        • Schmidt F.
        • van Crombruggen K.
        • et al.
        Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus.
        J Allergy Clin Immunol. 2017; 139: 492-500
        • Zhang L.
        • Jacobsson K.
        • Vasi J.
        • Lindberg M.
        • Frykberg L.
        A second IgG-binding protein in Staphylococcus aureus.
        Microbiology. 1998; 144: 985-991
        • Koch T.K.
        • Reuter M.
        • Barthel D.
        • Böhm S.
        • van den Elsen J.
        • Kraiczy P.
        • et al.
        Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b.
        PLoS One. 2012; 7e47638
        • Gonzalez C.D.
        • Ledo C.
        • Giai C.
        • Garófalo A.
        • Gómez M.I.
        The Sbi protein contributes to Staphylococcus aureus inflammatory response during systemic infection.
        PLoS One. 2015; 10e0131879
        • Wang X.
        • Cheng D.
        • Hu G.
        • Liang L.
        • Tan F.
        • Xiao T.
        • et al.
        Tumor necrosis factor (TNF) receptor expression determines keratinocyte fate upon stimulation with TNF-like weak inducer of apoptosis.
        Mediators Inflamm. 2019; 20192945083
        • Aufiero B.
        • Guo M.
        • Young C.
        • Duanmu Z.
        • Talwar H.
        • Lee H.K.
        • et al.
        Staphylococcus aureus induces the expression of tumor necrosis factor-alpha in primary human keratinocytes.
        Int J Dermatol. 2007; 46: 687-694
        • Meephansan J.
        • Komine M.
        • Tsuda H.
        • Karakawa M.
        • Tominaga S.
        • Ohtsuki M.
        Expression of IL-33 in the epidermis: the mechanism of induction by IL-17.
        J Dermatol Sci. 2013; 71: 107-114
        • Segawa R.
        • Shigeeda K.
        • Hatayama T.
        • Dong J.
        • Mizuno N.
        • Moriya T.
        • et al.
        EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line.
        J Dermatol Sci. 2018; 89: 290-298
        • Kishibe M.
        Physiological and pathological roles of kallikrein-related peptidases in the epidermis.
        J Dermatol Sci. 2019; 95: 50-55
        • Integrative HMP (iHMP) Research Network Consortium
        The Integrative Human Microbiome Project.
        Nature. 2019; 569: 641-648
        • Bauweiler A.M.
        • Goleva E.
        • Leung D.Y.M.
        Staphylococcus aureus lipoteichoic acid initiates a TSLP-basophil-IL-4 axis in the skin.
        J Invest Dermatol. 2020; 140: 915-917
        • Vu A.T.
        • Baba T.
        • Chen X.
        • Le T.A.
        • Kinoshita H.
        • Xie Y.
        • et al.
        Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the toll-like receptor 2-toll-like receptor 6 pathway.
        J Allergy Clin Immunol. 2010; 126: 985-993.e1-3