Advertisement

Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1

Published:August 24, 2020DOI:https://doi.org/10.1016/j.jaci.2020.07.033

      Background

      We studied 2 unrelated patients with immune thrombocytopenia and autoimmune hemolytic anemia in the setting of acute infections. One patient developed multisystem inflammatory syndrome in children in the setting of a severe acute respiratory syndrome coronavirus 2 infection.

      Objectives

      We sought to identify the mechanisms underlying the development of infection-driven autoimmune cytopenias.

      Methods

      Whole-exome sequencing was performed on both patients, and the impact of the identified variants was validated by functional assays using the patients’ PBMCs.

      Results

      Each patient was found to have a unique heterozygous truncation variant in suppressor of cytokine signaling 1 (SOCS1). SOCS1 is an essential negative regulator of type I and type II IFN signaling. The patients’ PBMCs showed increased levels of signal transducer and activator of transcription 1 phosphorylation and a transcriptional signature characterized by increased expression of type I and type II IFN-stimulated genes and proapoptotic genes. The enhanced IFN signature exhibited by the patients’ unstimulated PBMCs parallels the hyperinflammatory state associated with multisystem inflammatory syndrome in children, suggesting the contributions of SOCS1 in regulating the inflammatory response characteristic of multisystem inflammatory syndrome in children.

      Conclusions

      Heterozygous loss-of-function SOCS1 mutations are associated with enhanced IFN signaling and increased immune cell activation, thereby predisposing to infection-associated autoimmune cytopenias.

      Key words

      Abbreviations used:

      AIHA (Autoimmune hemolytic anemia), COVID-19 (Coronavirus disease 2019), ES (Evans syndrome), ISG (IFN-stimulated gene), ITP (Immune thrombocytopenia), JAK (Janus kinase), KIR (Kinase inhibitory region), MIS-C (Multisystem inflammatory syndrome in children), SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), SOCS (Suppressor of cytokine signaling), STAT (Signal transducer and activator of transcription)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liau N.P.D.
        • Laktyushin A.
        • Lucet I.S.
        • Murphy J.M.
        • Yao S.
        • Whitlock E.
        • et al.
        The molecular basis of JAK/STAT inhibition by SOCS1.
        Nat Commun. 2018; 9: 1558
        • Alexander W.S.
        • Starr R.
        • Fenner J.E.
        • Scott C.L.
        • Handman E.
        • Sprigg N.S.
        • et al.
        SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine.
        Cell. 1999; 98: 597-608
        • Fenner J.E.
        • Starr R.
        • Cornish A.L.
        • Zhang J.-G.
        • Metcalf D.
        • Schreiber R.D.
        • et al.
        Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity.
        Nat Immunol. 2006; 7: 33-39
        • Fujimoto M.
        Inadequate induction of suppressor of cytokine signaling-1 causes systemic autoimmune diseases.
        Int Immunol. 2004; 16: 303-314
        • Thaventhiran J.E.D.
        • Lango Allen H.
        • Burren O.S.
        • Rae W.
        • Greene D.
        • Staples E.
        • et al.
        Whole-genome sequencing of a sporadic primary immunodeficiency cohort.
        Nature. 2020; 583: 90-95
        • Jaime-Pérez J.C.
        • Aguilar-Calderón P.E.
        • Salazar-Cavazos L.
        • Gómez-Almaguer D.
        Evans syndrome: clinical perspectives, biological insights and treatment modalities.
        J Blood Med. 2018; 9: 171-184
      1. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation [published online ahead of print June 3, 2020]. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28382.

        • Feldstein L.R.
        • Rose E.B.
        • Horwitz S.M.
        • Collins J.P.
        • Newhams M.M.
        • Son M.B.F.
        • et al.
        Multisystem inflammatory syndrome in U.S. children and adolescents.
        N Engl J Med. 2020; 383: 334-346
        • Barrat F.J.
        • Crow M.K.
        • Ivashkiv L.B.
        Interferon target-gene expression and epigenomic signatures in health and disease.
        Nat Immunol. 2019; 20: 1574-1583
        • Rice G.I.
        • del Toro Duany Y.
        • Jenkinson E.M.
        • Forte G.M.A.
        • Anderson B.H.
        • Ariaudo G.
        • et al.
        Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling.
        Nat Genet. 2014; 46: 503-509
        • Rice G.I.
        • Melki I.
        • Frémond M.-L.
        • Briggs T.A.
        • Rodero M.P.
        • Kitabayashi N.
        • et al.
        Assessment of type I interferon signaling in pediatric inflammatory disease.
        J Clin Immunol. 2017; 37: 123-132
        • Li Y.
        • Lee P.Y.
        • Kellner E.S.
        • Paulus M.
        • Switanek J.
        • Xu Y.
        • et al.
        Monocyte surface expression of Fcγ receptor RI (CD64), a biomarker reflecting type-I interferon levels in systemic lupus erythematosus.
        Arthritis Res Ther. 2010; 12: R90
        • Guiducci C.
        • Gong M.
        • Xu Z.
        • Gill M.
        • Chaussabel D.
        • Meeker T.
        • et al.
        TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus.
        Nature. 2010; 465: 937-941
        • Kiefer K.
        • Oropallo M.A.
        • Cancro M.P.
        • Marshak-Rothstein A.
        Role of type I interferons in the activation of autoreactive B cells.
        Immunol Cell Biol. 2012; 90: 498-504
        • Srivastava S.
        • Koch M.A.
        • Pepper M.
        • Campbell D.J.
        Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection.
        J Exp Med. 2014; 211: 961-974
        • Malireddi R.K.S.
        • Kanneganti T.-D.
        Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection.
        Front Cell Infect Microbiol. 2013; 3: 77
        • Lin F.
        • Karwan M.
        • Saleh B.
        • Hodge D.L.
        • Chan T.
        • Boelte K.C.
        • et al.
        IFN-γ causes aplastic anemia by altering hematopoietic stem/progenitor cell composition and disrupting lineage differentiation.
        Blood. 2014; 124: 3699-3708
        • Refaeli Y.
        • Van Parijs L.
        • Alexander S.I.
        • Abbas A.K.
        Interferon γ is required for activation-induced death of T lymphocytes.
        J Exp Med. 2002; 196: 999-1005
        • Galeotti C.
        • Bayry J.
        Autoimmune and inflammatory diseases following COVID-19.
        Nat Rev Rheumatol. 2020; 16: 413-414
        • Li M.
        • Nguyen C.B.
        • Yeung Z.
        • Sanchez K.
        • Rosen D.
        • Bushan S.
        Evans syndrome in a patient with COVID-19.
        Br J Haematol. 2020; 190: e59-e61
        • Lopez C.
        • Kim J.
        • Pandey A.
        • Huang T.
        • DeLoughery T.G.
        Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia.
        Br J Haematol. 2020; 190: 31-32
        • Zagorski E.
        • Pawar T.
        • Rahimian S.
        • Forman D.
        Cold agglutinin autoimmune haemolytic anaemia associated with novel coronavirus (COVID-19).
        Br J Haematol. 2020; 190: e183-e184
        • Capes A.
        • Bailly S.
        • Hantson P.
        • Gerard L.
        • Laterre P.-F.
        COVID-19 infection associated with autoimmune hemolytic anemia.
        Ann Hematol. 2020; 99: 1679-1680
        • Lazarian G.
        • Quinquenel A.
        • Bellal M.
        • Siavellis J.
        • Jacquy C.
        • Re D.
        • et al.
        Autoimmune haemolytic anaemia associated with COVID-19 infection.
        Br J Haematol. 2020; 190: 29-31
      2. Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City [published online ahead of print June 8, 2020]. JAMA. https://doi.org/10.1001/jama.2020.10374.

      References

        • Li M.
        • Nguyen C.B.
        • Yeung Z.
        • Sanchez K.
        • Rosen D.
        • Bushan S.
        Evans syndrome in a patient with COVID-19.
        Br J Haematol. 2020; 190: e59-e61
        • Lopez C.
        • Kim J.
        • Pandey A.
        • Huang T.
        • DeLoughery T.G.
        Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia.
        Br J Haematol. 2020; 190: 31-32
        • Zagorski E.
        • Pawar T.
        • Rahimian S.
        • Forman D.
        Cold agglutinin autoimmune haemolytic anaemia associated with novel coronavirus (COVID-19).
        Br J Haematol. 2020; 190: e183-e184
        • Capes A.
        • Bailly S.
        • Hantson P.
        • Gerard L.
        • Laterre P.-F.
        COVID-19 infection associated with autoimmune hemolytic anemia.
        Ann Hematol. 2020; 99: 1679-1680
        • Lazarian G.
        • Quinquenel A.
        • Bellal M.
        • Siavellis J.
        • Jacquy C.
        • Re D.
        • et al.
        Autoimmune haemolytic anaemia associated with COVID-19 infection.
        Br J Haematol. 2020; 190: 29-31