Cow’s milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells

  • Franziska Roth-Walter
    Corresponding author: Franziska Roth-Walter, PhD, Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria

    Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
  • Sheriene Moussa Afify
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria

    Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
    Search for articles by this author
  • Luis F. Pacios
    Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
    Search for articles by this author
  • Bart R. Blokhuis
    Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
    Search for articles by this author
  • Frank Redegeld
    Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
    Search for articles by this author
  • Andreas Regner
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
    Search for articles by this author
  • Lisa-Marie Petje
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
    Search for articles by this author
  • Alessandro Fiocchi
    Childrens Hospital Bambino Gesù, Rome, Italy
    Search for articles by this author
  • Eva Untersmayr
    Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
  • Zdenek Dvorak
    Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
    Search for articles by this author
  • Karin Hufnagl
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria

    Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
  • Isabella Pali-Schöll
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria

    Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
  • Erika Jensen-Jarolim
    Erika Jensen-Jarolim, MD, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Waehringer G. 18-20, 1090 Vienna, Austria.
    The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria

    Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
    Search for articles by this author


      Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood.


      Our aims were to assess the capacity of ligand-free apoBLG versus loaded BLG (holoBLG) to protect mice against allergy by using an iron-quercetin complex as an exemplary ligand and to study the molecular mechanisms of this protection.


      Binding of iron-quercetin to BLG was modeled and confirmed by spectroscopy and docking calculations. Serum IgE binding to apoBLG and holoBLG in children allergic to milk and children tolerant of milk was assessed. Mice were intranasally treated with apoBLG versus holoBLG and analyzed immunologically after systemic challenge. Aryl hydrocarbon receptor (AhR) activation was evaluated with reporter cells and Cyp1A1 expression. Treated human PBMCs and human mast cells were assessed by fluorescence-activated cell sorting and degranulation, respectively.


      Modeling predicted masking of major IgE and T-cell epitopes of BLG by ligand binding. In line with this modeling, IgE binding in children allergic to milk was reduced toward holoBLG, which also impaired degranulation of mast cells. In mice, only treatments with holoBLG prevented allergic sensitization and anaphylaxis, while sustaining regulatory T cells. BLG facilitated quercetin-dependent AhR activation and, downstream of AhR, lung Cyp1A1 expression. HoloBLG shuttled iron into monocytic cells and impaired their antigen presentation.


      The cargo of holoBLG is decisive in preventing allergy in vivo. BLG without cargo acted as an allergen in vivo and further primed human mast cells for degranulation in an antigen-independent fashion. Our data provide a mechanistic explanation why the same proteins can act either as tolerogens or as allergens.

      Graphical abstract

      Key words

      Abbreviations used:

      AhR (Aryl hydrocarbon receptor), β-hex (β-hexosaminidase), BLG (β-Lactoglobulin), FeQ2 (Iron–quercetin 2), LCN (Lipocalin), SCF (Stem cell factor), TBS (Tris-buffered saline), Treg (Regulatory T), UV-VIS (Ultraviolet-visible spectroscopy)
      To read this article in full you will need to make a payment


        • Jordakieva G.
        • Kundi M.
        • Untersmayr E.
        • Pali-Scholl I.
        • Reichardt B.
        • Jensen-Jarolim E.
        Country-wide medical records infer increased allergy risk of gastric acid inhibition.
        Nat Commun. 2019; 10: 3298
        • Stein M.M.
        • Hrusch C.L.
        • Gozdz J.
        • Igartua C.
        • Pivniouk V.
        • Murray S.E.
        • et al.
        Innate immunity and asthma risk in amish and hutterite farm children.
        N Engl J Med. 2016; 375: 411-421
        • Ege M.J.
        • Mayer M.
        • Normand A.C.
        • Genuneit J.
        • Cookson W.O.
        • Braun-Fahrlander C.
        • et al.
        Exposure to environmental microorganisms and childhood asthma.
        N Engl J Med. 2011; 364: 701-709
        • Waser M.
        • Michels K.B.
        • Bieli C.
        • Floistrup H.
        • Pershagen G.
        • von Mutius E.
        • et al.
        Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe.
        Clin Exp Allergy. 2007; 37: 661-670
        • Brick T.
        • Schober Y.
        • Bocking C.
        • Pekkanen J.
        • Genuneit J.
        • Loss G.
        • et al.
        Omega-3 fatty acids contribute to the asthma-protective effect of unprocessed cow's milk.
        J Allergy Clin Immunol. 2016; 137: 1699-1706.e13
        • Jonsson K.
        • Barman M.
        • Moberg S.
        • Sjoberg A.
        • Brekke H.K.
        • Hesselmar B.
        • et al.
        Fat intake and breast milk fatty acid composition in farming and nonfarming women and allergy development in the offspring.
        Pediatr Res. 2016; 79: 114-123
        • Loss G.
        • Apprich S.
        • Waser M.
        • Kneifel W.
        • Genuneit J.
        • Buchele G.
        • et al.
        The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study.
        J Allergy Clin Immunol. 2011; 128: 766-773.e4
        • Abbring S.
        • Kusche D.
        • Roos T.C.
        • Diks M.A.P.
        • Hols G.
        • Garssen J.
        • et al.
        Milk processing increases the allergenicity of cow's milk-preclinical evidence supported by a human proof-of-concept provocation pilot.
        Clin Exp Allergy. 2019; 49: 1013-1025
        • Lam H.Y.
        • van Hoffen E.
        • Michelsen A.
        • Guikers K.
        • van der Tas C.H.
        • Bruijnzeel-Koomen C.A.
        • et al.
        Cow's milk allergy in adults is rare but severe: both casein and whey proteins are involved.
        Clin Exp Allergy. 2008; 38: 995-1002
        • Kaczmarski M.
        • Wasilewska J.
        • Cudowska B.
        • Semeniuk J.
        • Klukowski M.
        • Matuszewska E.
        The natural history of cow's milk allergy in north-eastern Poland.
        Adv Med Sci. 2013; 58: 22-30
        • Jensen-Jarolim E.
        • Pacios L.F.
        • Bianchini R.
        • Hofstetter G.
        • Roth-Walter F.
        Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy.
        Allergy. 2016; 71: 286-294
        • Roth-Walter F.
        • Berin M.C.
        • Arnaboldi P.
        • Escalante C.R.
        • Dahan S.
        • Rauch J.
        • et al.
        Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer's patches.
        Allergy. 2008; 63: 882-890
        • Fluckinger M.
        • Merschak P.
        • Hermann M.
        • Haertle T.
        • Redl B.
        Lipocalin-interacting-membrane-receptor (LIMR) mediates cellular internalization of beta-lactoglobulin.
        Biochim Biophys Acta. 2008; 1778: 342-347
        • Mansouri A.
        • Gueant J.L.
        • Capiaumont J.
        • Pelosi P.
        • Nabet P.
        • Haertle T.
        Plasma membrane receptor for beta-lactoglobulin and retinol-binding protein in murine hybridomas.
        Biofactors. 1998; 7: 287-298
        • Flower D.R.
        Beyond the superfamily: the lipocalin receptors.
        Biochim Biophys Acta. 2000; 1482: 327-336
        • Hesselink R.W.
        • Findlay J.B.
        Expression, characterization and ligand specificity of lipocalin-1 interacting membrane receptor (LIMR).
        Mol Membr Biol. 2013; 30: 327-337
        • Devireddy L.R.
        • Gazin C.
        • Zhu X.
        • Green M.R.
        A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake.
        Cell. 2005; 123: 1293-1305
        • Roth-Walter F.
        • Schmutz R.
        • Mothes-Luksch N.
        • Lemell P.
        • Zieglmayer P.
        • Zieglmayer R.
        • et al.
        Clinical efficacy of sublingual immunotherapy is associated with restoration of steady-state serum lipocalin 2 after SLIT: a pilot study.
        World Allergy Organ J. 2018; 11: 21
        • Wojnar P.
        • Lechner M.
        • Redl B.
        Antisense down-regulation of lipocalin-interacting membrane receptor expression inhibits cellular internalization of lipocalin-1 in human NT2 cells.
        J Biol Chem. 2003; 278: 16209-16215
      1. Roth-Walter F, Jensen-Jarolim E, Gomez-Casado C, Diaz-Perales A, Pacios LF, Singer J. Method and means for diagnosing and treating allergy. EP 14150965.3, US 14/204,570 2014.

        • Bao G.
        • Clifton M.
        • Hoette T.M.
        • Mori K.
        • Deng S.X.
        • Qiu A.
        • et al.
        Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex.
        Nat Chem Biol. 2010; 6: 602-609
        • Fluckinger M.
        • Haas H.
        • Merschak P.
        • Glasgow B.J.
        • Redl B.
        Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores.
        Antimicrob Agents Chemother. 2004; 48: 3367-3372
        • Roth-Walter F.
        • Pacios L.F.
        • Gomez-Casado C.
        • Hofstetter G.
        • Roth G.A.
        • Singer J.
        • et al.
        The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron.
        PLoS One. 2014; 9e104803
        • Chaneton L.
        • Perez Saez J.M.
        • Bussmann L.E.
        Antimicrobial activity of bovine beta-lactoglobulin against mastitis-causing bacteria.
        J Dairy Sci. 2011; 94: 138-145
        • Kanakis C.D.
        • Hasni I.
        • Bourassa P.
        • Tarantilis P.A.
        • Polissiou M.G.
        • Tajmir-Riahi H.A.
        Milk beta-lactoglobulin complexes with tea polyphenols.
        Food Chem. 2011; 127: 1046-1055
        • Hufnagl K.
        • Ghosh D.
        • Wagner S.
        • Fiocchi A.
        • Dahdah L.
        • Bianchini R.
        • et al.
        Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope.
        Sci Rep. 2018; 8: 1598
        • Stojadinovic M.
        • Radosavljevic J.
        • Ognjenovic J.
        • Vesic J.
        • Prodic I.
        • Stanic-Vucinic D.
        • et al.
        Binding affinity between dietary polyphenols and beta-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed.
        Food Chem. 2013; 136: 1263-1271
        • Rawel H.M.
        • Rohn S.
        • Kroll J.
        Influence of a sugar moiety (rhamnosylglucoside) at 3-O position on the reactivity of quercetin with whey proteins.
        Int J Biol Macromol. 2003; 32: 109-120
        • Zhang L.
        • Wang Y.
        • Xu M.
        • Hu X.
        Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to beta-lactoglobulin: a spectroscopic analysis.
        Food Chem. 2017; 237: 39-45
        • Keppler J.K.
        • Martin D.
        • Garamus V.M.
        • Schwarz K.
        Differences in binding behavior of (-)-epigallocatechin gallate to beta-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B).
        J Mol Recognit. 2015; 28: 656-666
        • Perron N.R.
        • Brumaghim J.L.
        A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
        Cell Biochem Biophys. 2009; 53: 75-100
        • Perron N.R.
        • Hodges J.N.
        • Jenkins M.
        • Brumaghim J.L.
        Predicting how polyphenol antioxidants prevent DNA damage by binding to iron.
        Inorg Chem. 2008; 47: 6153-6161
        • Cook G.M.
        • Loder C.
        • Soballe B.
        • Stafford G.P.
        • Membrillo-Hernandez J.
        • Poole R.K.
        A factor produced by Escherichia coli K-12 inhibits the growth of E. coli mutants defective in the cytochrome bd quinol oxidase complex: enterochelin rediscovered.
        Microbiology. 1998; 144: 3297-3308
        • Khodr H.H.
        • Hider R.C.
        • Duhme-Klair A.K.
        The iron-binding properties of aminochelin, the mono(catecholamide) siderophore of Azotobacter vinelandii.
        J Biol Inorg Chem. 2002; 7: 891-896
        • Roth-Walter F.
        • Gomez-Casado C.
        • Pacios L.F.
        • Mothes-Luksch N.
        • Roth G.A.
        • Singer J.
        • et al.
        Bet v 1 from birch pollen is a lipocalin-like protein acting as allergen only when devoid of iron by promoting Th2 lymphocytes.
        J Biol Chem. 2014; 289: 17416-17421
        • Mirpoor S.F.
        • Hosseini S.M.H.
        • Nekoei A.R.
        Efficient delivery of quercetin after binding to beta-lactoglobulin followed by formation soft-condensed core-shell nanostructures.
        Food Chem. 2017; 233: 282-289
        • Sahihi M.
        • Heidari-Koholi Z.
        • Bordbar A.-K.
        The interaction of polyphenol flavonoids with β-lactoglobulin: molecular docking and molecular dynamics simulation studies.
        J Macromol Sci Part B. 2012; 51: 2311-2323
        • Plundrich N.J.
        • Bansode R.R.
        • Foegeding E.A.
        • Williams L.L.
        • Lila M.A.
        Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro.
        Food Funct. 2017; 8: 1611-1621
        • Jacob T.
        • von Loetzen C.S.
        • Reuter A.
        • Lacher U.
        • Schiller D.
        • Schobert R.
        • et al.
        Identification of a natural ligand of the hazel allergen Cor a 1.
        Sci Rep. 2019; 9: 8714
        • Garrido-Arandia M.
        • Silva-Navas J.
        • Ramirez-Castillejo C.
        • Cubells-Baeza N.
        • Gomez-Casado C.
        • Barber D.
        • et al.
        Characterisation of a flavonoid ligand of the fungal protein Alt a 1.
        Sci Rep. 2016; 6: 33468
        • Besle J.M.
        • Viala D.
        • Martin B.
        • Pradel P.
        • Meunier B.
        • Berdague J.L.
        • et al.
        Ultraviolet-absorbing compounds in milk are related to forage polyphenols.
        J Dairy Sci. 2010; 93: 2846-2856
        • Yu E.S.
        • Min H.J.
        • An S.Y.
        • Won H.Y.
        • Hong J.H.
        • Hwang E.S.
        Regulatory mechanisms of IL-2 and IFNgamma suppression by quercetin in T helper cells.
        Biochem Pharmacol. 2008; 76: 70-78
        • Tong Z.
        • Wu X.
        • Ovcharenko D.
        • Zhu J.
        • Chen C.S.
        • Kehrer J.P.
        Neutrophil gelatinase-associated lipocalin as a survival factor.
        Biochem J. 2005; 391: 441-448
        • Kehrer J.P.
        Lipocalin-2: pro- or anti-apoptotic?.
        Cell Biol Toxicol. 2010; 26: 83-89
        • Shields-Cutler R.R.
        • Crowley J.R.
        • Hung C.S.
        • Stapleton A.E.
        • Aldrich C.C.
        • Marschall J.
        • et al.
        Human urinary composition controls antibacterial activity of siderocalin.
        J Biol Chem. 2015; 290: 15949-15960
        • Devireddy L.R.
        • Hart D.O.
        • Goetz D.H.
        • Green M.R.
        A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production.
        Cell. 2010; 141: 1006-1017
        • Grabenhenrich L.B.
        • Reich A.
        • McBride D.
        • Sprikkelman A.
        • Roberts G.
        • Grimshaw K.E.C.
        • et al.
        Physician's appraisal vs documented signs and symptoms in the interpretation of food challenge tests: the EuroPrevall birth cohort.
        Pediatr Allergy Immunol. 2018; 29: 58-65
        • Kontopidis G.
        • Holt C.
        • Sawyer L.
        The ligand-binding site of bovine beta-lactoglobulin: evidence for a function?.
        J Mol Biol. 2002; 318: 1043-1055
        • Morris G.M.
        • Huey R.
        • Lindstrom W.
        • Sanner M.F.
        • Belew R.K.
        • Goodsell D.S.
        • et al.
        AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility.
        J Comput Chem. 2009; 30: 2785-2791
        • Trott O.
        • Olson A.J.
        AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
        J Comput Chem. 2010; 31: 455-461
        • Carson M.
        Ribbons. Methods Enzymol. 1997; 277: 493-505
        • Pettersen E.F.
        • Goddard T.D.
        • Huang C.C.
        • Couch G.S.
        • Greenblatt D.M.
        • Meng E.C.
        • et al.
        UCSF Chimera--a visualization system for exploratory research and analysis.
        J Comput Chem. 2004; 25: 1605-1612
        • Krissinel E.
        • Henrick K.
        Inference of macromolecular assemblies from crystalline state.
        J Mol Biol. 2007; 372: 774-797
        • Moreland J.L.
        • Gramada A.
        • Buzko O.V.
        • Zhang Q.
        • Bourne P.E.
        The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications.
        BMC Bioinformatics. 2005; 6: 21
        • Manzano-Szalai K.
        • Pali-Scholl I.
        • Krishnamurthy D.
        • Stremnitzer C.
        • Flaschberger I.
        • Jensen-Jarolim E.
        Anaphylaxis imaging: non-invasive measurement of surface body temperature and physical activity in small animals.
        PLoS One. 2016; 11e0150819
        • Novotna A.
        • Pavek P.
        • Dvorak Z.
        Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: construction and characterization.
        Environ Sci Technol. 2011; 45: 10133-10139
        • Roth-Walter F.
        • Bergmayr C.
        • Meitz S.
        • Buchleitner S.
        • Stremnitzer C.
        • Fazekas J.
        • et al.
        Janus-faced acrolein prevents allergy but accelerates tumor growth by promoting immunoregulatory Foxp3+ cells: mouse model for passive respiratory exposure.
        Sci Rep. 2017; 7: 45067
        • Yu Y.
        • Blokhuis B.R.
        • Garssen J.
        • Redegeld F.A.
        A transcriptomic insight into the impact of colon cancer cells on mast cells.
        Int J Mol Sci. 2019; 20
        • El Hajji H.
        • Nkhili E.
        • Tomao V.
        • Dangles O.
        Interactions of quercetin with iron and copper ions: complexation and autoxidation.
        Free Radic Res. 2006; 40: 303-320
        • Fine J.M.
        • Baillargeon A.M.
        • Renner D.B.
        • Hoerster N.S.
        • Tokarev J.
        • Colton S.
        • et al.
        Intranasal deferoxamine improves performance in radial arm water maze, stabilizes HIF-1alpha, and phosphorylates GSK3beta in P301L tau transgenic mice.
        Exp Brain Res. 2012; 219: 381-390
        • Koch S.
        • Stroisch T.J.
        • Vorac J.
        • Herrmann N.
        • Leib N.
        • Schnautz S.
        • et al.
        AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcepsilonRI and IDO.
        Allergy. 2017; 72: 1686-1693
        • Gandhi R.
        • Kumar D.
        • Burns E.J.
        • Nadeau M.
        • Dake B.
        • Laroni A.
        • et al.
        Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells.
        Nat Immunol. 2010; 11: 846-853
        • Quintana F.J.
        • Basso A.S.
        • Iglesias A.H.
        • Korn T.
        • Farez M.F.
        • Bettelli E.
        • et al.
        Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor.
        Nature. 2008; 453: 65-71
        • Xu T.
        • Zhou Y.
        • Qiu L.
        • Do D.C.
        • Zhao Y.
        • Cui Z.
        • et al.
        Aryl hydrocarbon receptor protects lungs from cockroach allergen-induced inflammation by modulating mesenchymal stem cells.
        J Immunol. 2015; 195: 5539-5550
        • Negishi T.
        • Kato Y.
        • Ooneda O.
        • Mimura J.
        • Takada T.
        • Mochizuki H.
        • et al.
        Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance.
        J Immunol. 2005; 175: 7348-7356
        • Aguilera-Montilla N.
        • Chamorro S.
        • Nieto C.
        • Sanchez-Cabo F.
        • Dopazo A.
        • Fernandez-Salguero P.M.
        • et al.
        Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells.
        Blood. 2013; 121: e108-e117
        • Jin U.H.
        • Park H.
        • Li X.
        • Davidson L.A.
        • Allred C.
        • Patil B.
        • et al.
        Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids.
        Toxicol Sci. 2018; 164: 205-217
        • Carrasco-Marin E.
        • Alvarez-Dominguez C.
        • Lopez-Mato P.
        • Martinez-Palencia R.
        • Leyva-Cobian F.
        Iron salts and iron-containing porphyrins block presentation of protein antigens by macrophages to MHC class II-restricted T cells.
        Cell Immunol. 1996; 171: 173-185
        • Agoro R.
        • Taleb M.
        • Quesniaux V.F.J.
        • Mura C.
        Cell iron status influences macrophage polarization.
        PLoS One. 2018; 13e0196921
        • Nairz M.
        • Theurl I.
        • Swirski F.K.
        • Weiss G.
        “Pumping iron”-how macrophages handle iron at the systemic, microenvironmental, and cellular levels.
        Pflugers Arch. 2017; 469: 397-418
        • Nairz M.
        • Schroll A.
        • Haschka D.
        • Dichtl S.
        • Sonnweber T.
        • Theurl I.
        • et al.
        Lipocalin-2 ensures host defense against Salmonella typhimurium by controlling macrophage iron homeostasis and immune response.
        Eur J Immunol. 2015; 45: 3073-3086
        • Hagag A.A.
        • Elgamasy M.A.
        • Abd Elbar E.S.
        Study of serum immunoglobulin levels and T lymphocyte subsets in children with beta thalassemia with iron overload in Egypt.
        Egypt J Immunol. 2016; 23: 97-105
        • Morikawa K.
        • Oseko F.
        • Morikawa S.
        A role for ferritin in hematopoiesis and the immune system.
        Leuk Lymphoma. 1995; 18: 429-433
        • Jarvinen K.M.
        • Beyer K.
        • Vila L.
        • Chatchatee P.
        • Busse P.J.
        • Sampson H.A.
        B-cell epitopes as a screening instrument for persistent cow's milk allergy.
        J Allergy Clin Immunol. 2002; 110: 293-297
        • Inoue R.
        • Matsushita S.
        • Kaneko H.
        • Shinoda S.
        • Sakaguchi H.
        • Nishimura Y.
        • et al.
        Identification of beta-lactoglobulin-derived peptides and class II HLA molecules recognized by T cells from patients with milk allergy.
        Clin Exp Allergy. 2001; 31: 1126-1134
        • Sakaguchi H.
        • Inoue R.
        • Kaneko H.
        • Watanabe M.
        • Suzuki K.
        • Kato Z.
        • et al.
        Interaction among human leucocyte antigen-peptide-T cell receptor complexes in cow's milk allergy: the significance of human leucocyte antigen and T cell receptor-complementarity determining region 3 loops.
        Clin Exp Allergy. 2002; 32: 762-770
        • Freier R.
        • Dall E.
        • Brandstetter H.
        Protease recognition sites in Bet v 1a are cryptic, explaining its slow processing relevant to its allergenicity.
        Sci Rep. 2015; 5: 12707
        • Machado Y.
        • Freier R.
        • Scheiblhofer S.
        • Thalhamer T.
        • Mayr M.
        • Briza P.
        • et al.
        Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen.
        J Allergy Clin Immunol. 2016; 137: 1525-1534
        • Theobald K.
        • Gross-Weege W.
        • Keymling J.
        • Konig W.
        Inhibition of histamine release in vitro by a blocking factor from human serum: comparison with the iron binding proteins transferrin and lactoferrin.
        Agents Actions. 1987; 20: 10-16
        • Theobald K.
        • Gross-Weege W.
        • Keymling J.
        • Konig W.
        Purification of serum proteins with inhibitory activity on the histamine release in vitro and/or in vivo.
        Int Arch Allergy Appl Immunol. 1987; 82: 295-297
        • Mecheri S.
        • Peltre G.
        • Lapeyre J.
        • David B.
        Biological effect of transferrin on mast cell mediator release during the passive cutaneous anaphylaxis reaction: a possible inhibition mechanism involving iron.
        Ann Inst Pasteur Immunol. 1987; 138: 213-221
        • Skazik-Voogt C.
        • Kuhler K.
        • Ott H.
        • Czaja K.
        • Zwadlo-Klarwasser G.
        • Merk H.F.
        • et al.
        Myeloid human cell lines lack functional regulation of aryl hydrocarbon receptor-dependent phase I genes.
        ALTEX. 2016; 33: 37-46
        • Kreitinger J.M.
        • Beamer C.A.
        • Shepherd D.M.
        Environmental immunology: lessons learned from exposure to a select panel of immunotoxicants.
        J Immunol. 2016; 196: 3217-3225
        • Vaidyanathan B.
        • Chaudhry A.
        • Yewdell W.T.
        • Angeletti D.
        • Yen W.F.
        • Wheatley A.K.
        • et al.
        The aryl hydrocarbon receptor controls cell-fate decisions in B cells.
        J Exp Med. 2017; 214: 197-208
        • Villa M.
        • Gialitakis M.
        • Tolaini M.
        • Ahlfors H.
        • Henderson C.J.
        • Wolf C.R.
        • et al.
        Aryl hydrocarbon receptor is required for optimal B-cell proliferation.
        EMBO J. 2017; 36: 116-128
        • Esser C.
        • Rannug A.
        • Stockinger B.
        The aryl hydrocarbon receptor in immunity.
        Trends Immunol. 2009; 30: 447-454
        • Bessede A.
        • Gargaro M.
        • Pallotta M.T.
        • Matino D.
        • Servillo G.
        • Brunacci C.
        • et al.
        Aryl hydrocarbon receptor control of a disease tolerance defence pathway.
        Nature. 2014; 511: 184-190
        • Goettel J.A.
        • Gandhi R.
        • Kenison J.E.
        • Yeste A.
        • Murugaiyan G.
        • Sambanthamoorthy S.
        • et al.
        AHR activation is protective against colitis driven by T cells in humanized mice.
        Cell Rep. 2016; 17: 1318-1329
        • Ye J.
        • Qiu J.
        • Bostick J.W.
        • Ueda A.
        • Schjerven H.
        • Li S.
        • et al.
        The aryl hydrocarbon receptor preferentially marks and promotes gut regulatory T cells.
        Cell Rep. 2017; 21: 2277-2290
        • Couroucli X.I.
        • Welty S.E.
        • Geske R.S.
        • Moorthy B.
        Regulation of pulmonary and hepatic cytochrome P4501A expression in the rat by hyperoxia: implications for hyperoxic lung injury.
        Mol Pharmacol. 2002; 61: 507-515
        • Bacher P.
        • Heinrich F.
        • Stervbo U.
        • Nienen M.
        • Vahldieck M.
        • Iwert C.
        • et al.
        Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans.
        Cell. 2016; 167: 1067-1078.e16
        • Qamar N.
        • Fishbein A.B.
        • Erickson K.A.
        • Cai M.
        • Szychlinski C.
        • Bryce P.J.
        • et al.
        Naturally occurring tolerance acquisition to foods in previously allergic children is characterized by antigen specificity and associated with increased subsets of regulatory T cells.
        Clin Exp Allergy. 2015; 45: 1663-1672
        • Thorson J.A.
        • Smith K.M.
        • Gomez F.
        • Naumann P.W.
        • Kemp J.D.
        Role of iron in T cell activation: TH1 clones differ from TH2 clones in their sensitivity to inhibition of DNA synthesis caused by IgG Mabs against the transferrin receptor and the iron chelator deferoxamine.
        Cell Immunol. 1991; 134: 126-137
        • Jason J.
        • Archibald L.K.
        • Nwanyanwu O.C.
        • Bell M.
        • Jensen R.J.
        • Gunter E.
        • et al.
        The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost.
        Clin Exp Immunol. 2001; 126: 466-473
        • Leung S.
        • Holbrook A.
        • King B.
        • Lu H.T.
        • Evans V.
        • Miyamoto N.
        • et al.
        Differential inhibition of inducible T cell cytokine secretion by potent iron chelators.
        J Biomol Screen. 2005; 10: 157-167
        • Drury K.E.
        • Schaeffer M.
        • Silverberg J.I.
        Association between atopic disease and anemia in US children.
        JAMA Pediatr. 2016; 170: 29-34
        • Nwaru B.I.
        • Hayes H.
        • Gambling L.
        • Craig L.C.
        • Allan K.
        • Prabhu N.
        • et al.
        An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy.
        Br J Nutr. 2014; 112: 2018-2027
        • Shaheen S.O.
        • Macdonald-Wallis C.
        • Lawlor D.A.
        • Henderson A.J.
        Haemoglobin concentrations in pregnancy and respiratory and allergic outcomes in childhood: birth cohort study.
        Clin Exp Allergy. 2017; 47: 1615-1624
        • Shaheen S.O.
        • Newson R.B.
        • Henderson A.J.
        • Emmett P.M.
        • Sherriff A.
        • Cooke M.
        • et al.
        Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema.
        Eur Respir J. 2004; 24: 292-297
        • Zhang Q.
        • Cui T.
        • Chang Y.
        • Zhang W.
        • Li S.
        • He Y.
        • et al.
        HO-1 regulates the function of Treg: Association with the immune intolerance in vitiligo.
        J Cell Mol Med. 2018; 22: 4335-4343
        • Chen J.
        • Lu W.Y.
        • Zhao M.F.
        • Cao X.L.
        • Jiang Y.Y.
        • Jin X.
        • et al.
        Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes.
        Ann Hematol. 2017; 96: 1085-1095
        • Cronin S.J.F.
        • Seehus C.
        • Weidinger A.
        • Talbot S.
        • Reissig S.
        • Seifert M.
        • et al.
        The metabolite BH4 controls T cell proliferation in autoimmunity and cancer.
        Nature. 2018; 563: 564-568
        • Yang D.
        • Shui T.
        • Miranda J.W.
        • Gilson D.J.
        • Song Z.
        • Chen J.
        • et al.
        Mycobacterium leprae-infected macrophages preferentially primed regulatory T cell responses and was associated with lepromatous leprosy.
        PLoS Negl Trop Dis. 2016; 10e0004335
        • Chen W.
        • Wang W.
        • Ma X.
        • Lv R.
        • Balaso Watharkar R.
        • Ding T.
        • et al.
        Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (-)-epigallocatechin-3-gallate.
        Food Chem. 2019; 274: 234-241
        • Tao F.
        • Xiao C.
        • Chen W.
        • Zhang Y.
        • Pan J.
        • Jia Z.
        Covalent modification of beta-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule.
        Int J Biol Macromol. 2019; 126: 1186-1191
        • Salvi A.
        • Carrupt P.
        • Tillement J.
        • Testa B.
        Structural damage to proteins caused by free radicals: asessment, protection by antioxidants, and influence of protein binding.
        Biochem Pharmacol. 2001; 61: 1237-1242
        • Li X.
        • Lu Y.
        • Deng R.
        • Zheng T.
        • Lv L.
        Chemical components from the haulm of Artemisia selengensis and the inhibitory effect on glycation of beta-lactoglobulin.
        Food Funct. 2015; 6: 1841-1846
        • Zommara M.
        • Toubo H.
        • Sakono M.
        • Imaizumi K.
        Prevention of peroxidative stress in rats fed on a low vitamin E-containing diet by supplementing with a fermented bovine milk whey preparation: effect of lactic acid and beta-lactoglobulin on the antiperoxidative action.
        Biosci Biotechnol Biochem. 1998; 62: 710-717
        • Bartfay W.J.
        • Davis M.T.
        • Medves J.M.
        • Lugowski S.
        Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy.
        Can J Cardiol. 2003; 19: 1163-1168
        • Wang X.
        • Ai T.
        • Meng X.L.
        • Zhou J.
        • Mao X.Y.
        In vitro iron absorption of alpha-lactalbumin hydrolysate-iron and beta-lactoglobulin hydrolysate-iron complexes.
        J Dairy Sci. 2014; 97: 2559-2566
        • Liu H.C.
        • Chen W.L.
        • Mao S.J.
        Antioxidant nature of bovine milk beta-lactoglobulin.
        J Dairy Sci. 2007; 90: 547-555
        • Song C.Y.
        • Chen W.L.
        • Yang M.C.
        • Huang J.P.
        • Mao S.J.
        Epitope mapping of a monoclonal antibody specific to bovine dry milk: involvement of residues 66-76 of strand D in thermal denatured beta-lactoglobulin.
        J Biol Chem. 2005; 280: 3574-3582
        • Kim Y.E.
        • Kim J.W.
        • Cheon S.
        • Nam M.S.
        • Kim K.K.
        Alpha-casein and beta-lactoglobulin from cow milk exhibit antioxidant activity: a plausible link to antiaging effects.
        J Food Sci. 2019; 84: 3083-3090