Advertisement

Effect of sleep deprivation and exercise on reaction threshold in adults with peanut allergy: A randomized controlled study

      Background

      Peanut allergy causes severe and fatal reactions. Current food allergen labeling does not address these risks adequately against the burden of restricting food choice for allergic patients because of limited data on thresholds of reactivity and the influence of everyday factors.

      Objective

      We estimated peanut threshold doses for a United Kingdom population with peanut allergy and examined the effect of sleep deprivation and exercise.

      Methods

      In a crossover study, after blind challenge, participants with peanut allergy underwent 3 open peanut challenges in random order: with exercise after each dose, with sleep deprivation preceding challenge, and with no intervention. Primary outcome was the threshold dose triggering symptoms (in milligrams of protein). Primary analysis estimated the difference between the nonintervention challenge and each intervention in log threshold (as percentage change). Dose distributions were modeled, deriving eliciting doses in the population with peanut allergy.

      Results

      Baseline challenges were performed in 126 participants, 100 were randomized, and 81 (mean age, 25 years) completed at least 1 further challenge. The mean threshold was 214 mg (SD, 330 mg) for nonintervention challenges, and this was reduced by 45% (95% CI, 21% to 61%; P = .001) and 45% (95% CI, 22% to 62%; P = .001) for exercise and sleep deprivation, respectively. Mean estimated eliciting doses for 1% of the population were 1.5 mg (95% CI, 0.8-2.5 mg) during nonintervention challenge (n = 81), 0.5 mg (95% CI, 0.2-0.8 mg) after sleep, and 0.3 mg (95% CI, 0.1-0.6 mg) after exercise. Conclusion: Exercise and sleep deprivation each significantly reduce the threshold of reactivity in patients with peanut allergy, putting them at greater risk of a reaction. Adjusting reference doses using these data will improve allergen risk management and labeling to optimize protection of consumers with peanut allergy.

      Graphical abstract

      Key words

      Abbreviations used:

      DBPC (Double-blind, placebo-controlled), ED (Eliciting dose), PAL (Precautionary allergen labeling), UK (United Kingdom)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pumphrey R.S.H.
        Lessons for management of anaphylaxis from a study of fatal reactions.
        Clin Exp Allergy. 2000; 30: 1144-1150
        • Pumphrey R.S.
        • Gowland M.H.
        Further fatal allergic reactions to food in the United Kingdom 1999-2006.
        J Allergy Clin Immunol. 2007; 119: 1018-1019
        • Stiefel G.
        • Anagnostou K.
        • Boyle R.J.
        • Brathwaite N.
        • Ewan P.
        • Fox A.T.
        • et al.
        BSACI guideline for the diagnosis and management of peanut and tree nut allergy.
        Clin Exp Allergy. 2017; 47: 719-739
        • Remington B.C.
        • Baumert J.L.
        • Blom W.M.
        • Houben G.F.
        • Taylor S.L.
        • Kruizinga A.G.
        Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK allergic consumers.
        Allergy. 2015; 70: 813-819
        • Robertson O.N.
        • Hourihane J.O.
        • Remington B.C.
        • Baumert J.L.
        • Taylor S.L.
        Survey of peanut levels in selected Irish food products bearing peanut allergen advisory labels.
        Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013; 30: 1467-1472
        • Hefle S.L.
        • Furlong T.J.
        • Niemann L.
        • Lemon-Mule H.
        • Sicherer S.
        • Taylor S.L.
        Consumer attitudes and risks associated with packaged foods having advisory labeling regarding the presence of peanuts.
        J Allergy Clin Immunol. 2007; 120: 171-176
        • Hourihane J.O.B.
        • Allen K.J.
        • Shreffler W.G.
        • Dunngalvin G.
        • Nordlee J.A.
        • Zurzolo G.A.
        • et al.
        Peanut Allergen Threshold Study (PATS): novel single-dose oral food challenge study to validate eliciting doses in children with peanut allergy.
        J Allergy Clin Immunol. 2017; 139: 1583-1590
        • Allen K.J.
        • Remington B.C.
        • Baumert J.L.
        • Crevel R.W.R.
        • Houben G.F.
        • Brooke-Taylor S.
        • et al.
        Allergen reference doses for precautionary labeling (VITAL 2.0): clinical implications.
        J Allergy Clin Immunol. 2014; 133: 156-164
        • Christensen M.J.
        • Eller E.
        • Mortz C.G.
        • Brockow K.
        • Bindslev-Jensen C.
        Exercise lowers threshold and increases severity, but wheat-dependent, exercise-induced anaphylaxis can be elicited at rest.
        J Allergy Clin Immunol Pract. 2018; 6: 514-520
        • Brockow K.
        • Kneissl D.
        • Valentini L.
        • Zelger O.
        • Grosber M.
        • Kugler C.
        • et al.
        Using a gluten oral food challenge protocol to improve diagnosis of wheat-dependent exercise-induced anaphylaxis.
        J Allergy Clin Immunol. 2015; 135: 977-984.e4
        • Anagnostou K.
        • Islam S.
        • King Y.
        • Foley L.
        • Pasea L.
        • Bond S.
        • et al.
        Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial.
        Lancet. 2014; 383: 1297-1304
        • Sampson H.A.
        • Gerth van Wijk R.
        • Bindslev-Jensen C.
        • Sicherer S.
        • Teuber S.S.
        • Burks A.W.
        • et al.
        Standardizing double-blind, placebo-controlled oral food challenges: American Academy of Allergy, Asthma & Immunology–European Academy of Allergy and Clinical Immunology PRACTALL consensus report.
        J Allergy Clin Immunol. 2012; 130: 1260-1274
        • Jia C.E.
        • Zhang H.P.
        • Lv Y.
        • Liang R.
        • Jiang Y.Q.
        • Powell H.
        • et al.
        The Asthma Control Test and Asthma Control Questionnaire for assessing asthma control: systematic review and meta-analysis.
        J Allergy Clin Immunol. 2013; 131: 695-703
        • Schmitt J.
        • Langan S.
        • Williams H.C.
        What are the best outcome measurements for atopic eczema? A systematic review.
        J Allergy Clin Immunol. 2007; 120: 1389-1398
        • Wang M.
        • Tonnis B.
        • Pinnow D.
        • Barkley N.
        • Pederson G.
        Progress on screening the USDA cultivated peanut germplasm collection for variability in seed weight, seed-coat color, oil content and fatty acid composition).
        (Available at:) (Accessed August 8, 2019)
        • Taylor S.L.
        • Crevel R.W.R.
        • Sheffield D.
        • Kabourek J.
        • Baumert J.
        Threshold dose for peanut: risk characterization based upon published results from challenges of peanut-allergic individuals.
        Food Chem Toxicol. 2009; 47: 1198-1204
        • R Development Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna2014
        • Zhu J.
        • Pouillot R.
        • Kwegyir-Afful E.K.
        • Luccioli S.
        • Gendel S.M.
        A retrospective analysis of allergic reaction severities and minimal eliciting doses for peanut, milk, egg, and soy oral food challenges.
        Food Chem Toxicol. 2015; 80: 92-100
        • Ballmer-Weber B.K.
        • Fernandez-Rivas M.
        • Beyer K.
        • Defernez M.
        • Sperrin M.
        • Mackie A.R.
        • et al.
        How much is too much? Threshold dose distributions for 5 food allergens.
        J Allergy Clin Immunol. 2015; 135: 964-971
        • Blumchen K.
        • Beder A.
        • Beschorner J.
        • Ahrens F.
        • Gruebl A.
        • Hamelmann E.
        • et al.
        Modified oral food challenge used with sensitization biomarkers provides more real-life clinical thresholds for peanut allergy.
        J Allergy Clin Immunol. 2014; 134: 390-398.e4
        • Taylor S.L.
        • Moneret-Vautrin D.A.
        • Crevel R.W.R.
        • Sheffield D.
        • Morisset M.
        • Dumont P.
        • et al.
        Threshold dose for peanut: risk characterization based upon diagnostic oral challenge of a series of 286 peanut-allergic individuals.
        Food Chem Toxicol. 2010; 48: 814-819
        • Blom W.M.
        • Vlieg-Boerstra B.J.
        • Kruizinga A.G.
        • Van Der Heide S.
        • Houben G.F.
        • Dubois A.E.J.
        Threshold dose distributions for 5 major allergenic foods in children.
        J Allergy Clin Immunol. 2013; 131: 172-179
        • Klemans R.J.B.
        • Blom W.M.
        • van Erp F.C.
        • Masthoff L.J.N.
        • Rubingh C.M.
        • van der Ent C.K.
        • et al.
        Objective eliciting doses of peanut-allergic adults and children can be combined for risk assessment purposes.
        Clin Exp Allergy. 2015; 45: 1237-1244
        • Million M.
        • Taché Y.
        • Anton P.
        Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF.
        Am J Physiol. 1999; 276: G1027-G1036
        • Gue M.
        • Bonbonne C.
        • Fioramonti J.
        • More J.
        • Rio-Lacheze C.
        • Comera C.
        • et al.
        Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved.
        Am J Physiol. 1997; 272: G84-G91
        • Robson-Ansley P.
        • Du Toit G.
        Pathophysiology, diagnosis and management of exercise-induced anaphylaxis.
        Curr Opin Allergy Clin Immunol. 2010; 10: 312-317
        • Wölbing F.
        • Fischer J.
        • Köberle M.
        • Kaesler S.
        • Biedermann T.
        About the role and underlying mechanisms of cofactors in anaphylaxis.
        Allergy. 2013; 68: 1085-1092
        • Järvinen K.M.
        • Amalanayagam S.
        • Shreffler W.G.
        • Noone S.
        • Sicherer S.H.
        • Sampson H.A.
        • et al.
        Epinephrine treatment is infrequent and biphasic reactions are rare in food-induced reactions during oral food challenges in children.
        J Allergy Clin Immunol. 2009; 124: 1267-1272
        • Lieberman J.A.
        • Cox A.L.
        • Vitale M.
        • Sampson H.A.
        Outcomes of office-based, open food challenges in the management of food allergy.
        J Allergy Clin Immunol. 2011; 128: 1120-1122
        • Yun J.
        • Katelaris C.H.
        Food allergy in adolescents and adults.
        Intern Med J. 2009; 39: 475-478
        • Marrs T.
        • Lack G.
        Why do few food-allergic adolescents treat anaphylaxis with adrenaline?—Reviewing a pressing issue.
        Pediatr Allergy Immunol. 2013; 24: 222-229
        • Van Erp F.C.
        • Knulst A.C.
        • Meijer Y.
        • Gabriele C.
        • Van Der Ent C.K.
        Standardized food challenges are subject to variability in interpretation of clinical symptoms.
        Clin Transl Allergy. 2014; 4: 43