Advertisement

Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma

      Background

      In infants, distinct nasopharyngeal bacterial microbiotas differentially associate with the incidence and severity of acute respiratory tract infection and childhood asthma development.

      Objective

      We hypothesized that distinct nasal airway microbiota structures also exist in children with asthma and relate to clinical outcomes.

      Methods

      Nasal secretion samples (n = 3122) collected after randomization during the fall season from children with asthma (6-17 years, n = 413) enrolled in a trial of omalizumab (anti-IgE) underwent 16S rRNA profiling. Statistical analyses with exacerbation as the primary outcome and rhinovirus infection and respiratory illnesses as secondary outcomes were performed. Using A549 epithelial cells, we assessed nasal isolates of Moraxella, Staphylococcus, and Corynebacterium species for their capacity to induce epithelial damage and inflammatory responses.

      Results

      Six nasal airway microbiota assemblages, each dominated by Moraxella, Staphylococcus, Corynebacterium, Streptococcus, Alloiococcus, or Haemophilus species, were observed. Moraxella and Staphylococcus species–dominated microbiotas were most frequently detected and exhibited temporal stability. Nasal microbiotas dominated by Moraxella species were associated with increased exacerbation risk and eosinophil activation. Staphylococcus or Corynebacterium species–dominated microbiotas were associated with reduced respiratory illness and exacerbation events, whereas Streptococcus species–dominated assemblages increased the risk of rhinovirus infection. Nasal microbiota composition remained relatively stable despite viral infection or exacerbation; only a few taxa belonging to the dominant genera exhibited relative abundance fluctuations during these events. In vitro, Moraxella catarrhalis induced significantly greater epithelial damage and inflammatory cytokine expression (IL-33 and IL-8) compared with other dominant nasal bacterial isolates tested.

      Conclusion

      Distinct nasal airway microbiotas of children with asthma relate to the likelihood of exacerbation, rhinovirus infection, and respiratory illnesses during the fall season.

      Graphical abstract

      Key words

      Abbreviations used:

      ECP (Eosinophil cationic protein), PROSE (Preventive Omalizumab or Step-Up Therapy for Severe Fall Exacerbations), RR (Relative risk), V4 (Variable 4)
      To read this article in full you will need to make a payment

      References

        • Kozik A.J.
        • Huang Y.J.
        The microbiome in asthma: role in pathogenesis, phenotype, and response to treatment.
        Ann Allergy Asthma Immunol. 2019; 122: 270-275
        • Bisgaard H.
        • Hermansen M.N.
        • Buchvald F.
        • Loland L.
        • Halkjaer L.B.
        • Bønnelykke K.
        • et al.
        Childhood asthma after bacterial colonization of the airway in neonates.
        N Engl J Med. 2007; 357: 1487-1495
        • Teo S.M.
        • Mok D.
        • Pham K.
        • Kusel M.
        • Serralha M.
        • Troy N.
        • et al.
        The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development.
        Cell Host Microbe. 2015; 17: 704-715
        • Santee C.A.
        • Nagalingam N.A.
        • Faruqi A.A.
        • DeMuri G.P.
        • Gern J.E.
        • Wald E.R.
        • et al.
        Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis.
        Microbiome. 2016; 4: 34
        • Durack J.
        • Huang Y.J.
        • Nariya S.
        • Christian L.S.
        • Ansel K.M.
        • Beigelman A.
        • et al.
        Bacterial biogeography of adult airways in atopic asthma.
        Microbiome. 2018; 6: 104
        • Kloepfer K.M.
        • Lee W.M.
        • Pappas T.E.
        • Kang T.J.
        • Vrtis R.F.
        • Evans M.D.
        • et al.
        Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and exacerbations of asthma.
        J Allergy Clin Immunol. 2014; 133: 1301-1307.e3
        • Busse W.W.
        • Lemanske R.F.
        • Gern J.E.
        The role of viral respiratory infections in asthma and asthma exacerbations.
        Lancet. 2010; 376: 826-834
        • Robinson C.M.
        • Jesudhasan P.R.
        • Pfeiffer J.K.
        Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus.
        Cell Host Microbe. 2014; 15: 36-46
        • Busse W.W.
        • Morgan W.J.
        • Gergen P.J.
        • Mitchell H.E.
        • Gern J.E.
        • Liu A.H.
        • et al.
        Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children.
        N Engl J Med. 2011; 364: 1005-1015
        • Teach S.J.
        • Gill M.A.
        • Togias A.
        • Sorkness C.A.
        • Arbes S.J.
        • Calatroni A.
        • et al.
        Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations.
        J Allergy Clin Immunol. 2015; 136: 1476-1485
        • Fuhlbrigge A.
        • Peden D.
        • Apter A.J.
        • Boushey H.A.
        • Camargo C.
        • Gern J.
        • et al.
        Asthma outcomes: exacerbations.
        J Allergy Clin Immunol. 2012; 129: S34-S48
        • Bochkov Y.A.
        • Grindle K.
        • Vang F.
        • Evans M.D.
        • Gern J.E.
        Improved molecular typing assay for rhinovirus species A, B, and C.
        J Clin Microbiol. 2014; 52: 2461-2471
        • R Core Team
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna (Austria)2018 (Available from:) (Accessed May 31, 2019)
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • Bittinger K.
        • Bushman F.D.
        • Costello E.K.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Oksanen J.
        • Blanchet G.
        • Friendly M.
        • Kindt R.
        • Legendre P.
        • McGlinn D.
        • et al.
        vegan: Community Ecology Package.
        (Available at:) (Accessed May 31, 2019)
        • Esquivel A.
        • Busse W.W.
        • Calatroni A.
        • Togias A.G.
        • Grindle K.G.
        • Bochkov Y.A.
        • et al.
        Effects of omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma.
        Am J Respir Crit Care Med. 2017; 196: 985-992
        • Romero R.
        • Hassan S.S.
        • Gajer P.
        • Tarca A.L.
        • Fadrosh D.W.
        • Nikita L.
        • et al.
        The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women.
        Microbiome. 2014; 2: 4
        • Friedman J.
        • Alm E.J.
        Inferring correlation networks from genomic survey data.
        PLOS Comput Biol. 2012; 8: e1002687
        • Langfelder P.
        • Horvath S.
        WGCNA: an R package for weighted correlation network analysis.
        BMC Bioinformatics. 2008; 9: 559
        • Abreu N.A.
        • Nagalingam N.A.
        • Song Y.
        • Roediger F.C.
        • Pletcher S.D.
        • Goldberg A.N.
        • et al.
        Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis.
        Sci Transl Med. 2012; 4: 1-9
        • Denner D.R.
        • Sangwan N.
        • Becker J.B.
        • Hogarth D.K.
        • Oldham J.
        • Castillo J.
        • et al.
        Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways.
        J Allergy Clin Immunol. 2016; 137: 1398-1405.e3
        • Park H.
        • Shin J.W.
        • Park S.-G.
        • Kim W.
        Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease.
        PLoS One. 2014; 9: e109710
        • Kim B.S.
        • Lee E.
        • Lee M.J.
        • Kang M.J.
        • Yoon J.
        • Cho H.J.
        • et al.
        Different functional genes of upper airway microbiome associated with natural course of childhood asthma.
        Allergy. 2018; 73: 644-652
        • Fazlollahi M.
        • Lee T.D.
        • Andrade J.
        • Oguntuyo K.
        • Chun Y.
        • Grishina G.
        • et al.
        The nasal microbiome in asthma.
        J Allergy Clin Immunol. 2018; 142: 834-843.e2
        • Marsh R.L.
        • Kaestli M.
        • Chang A.B.
        • Binks M.J.
        • Pope C.E.
        • Hoffman L.R.
        • et al.
        The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx.
        Microbiome. 2016; 4: 37
        • Johnston S.L.
        Innate immunity in the pathogenesis of virus-induced asthma exacerbations.
        Proc Am Thorac Soc. 2007; 4: 267-270
        • Perez Vidakovics M.L.
        • Riesbeck K.
        Virulence mechanisms of Moraxella in the pathogenesis of infection.
        Curr Opin Infect Dis. 2009; 22: 279-285
        • Bashir H.
        • Grindle K.
        • Vrtis R.
        • Vang F.
        • Kang T.
        • Salazar L.
        • et al.
        Association of rhinovirus species with common cold and asthma symptoms and bacterial pathogens.
        J Allergy Clin Immunol. 2018; 141: 822-824.e9
        • Rofael S.A.D.
        • McHugh T.D.
        • Troughton R.
        • Beckmann J.
        • Spratt D.
        • Marlow N.
        • et al.
        Airway microbiome in adult survivors of extremely preterm birth: the EPICure study.
        Eur Respir J. 2019; 53
        • Lan F.
        • Zhang N.
        • Holtappels G.
        • De Ruyck N.
        • Krysko O.
        • Van Crombruggen K.
        • et al.
        Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell–derived cytokines.
        Am J Respir Crit Care Med. 2018; 198: 452-463