Advertisement

Nanoemulsion adjuvant–driven redirection of TH2 immunity inhibits allergic reactions in murine models of peanut allergy

Published:April 11, 2018DOI:https://doi.org/10.1016/j.jaci.2018.01.042

      Background

      Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity.

      Objective

      We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity.

      Methods

      Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity.

      Results

      The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response.

      Conclusions

      NE adjuvant–mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.

      Key words

      Abbreviations used:

      alum (Aluminum hydroxide), BAL (Bronchoalveolar lavage), CTx (Cholera toxin), Foxp3 (Forkhead box p3), MCPT-1 (Mast cell protease 1), mLN (Mesenteric lymph node), NE (Nanoemulsion), Treg (Regulatory T)
      To read this article in full you will need to make a payment

      References

        • Sicherer S.H.
        • Sampson H.A.
        Food allergy: epidemiology, pathogenesis, diagnosis, and treatment.
        J Allergy Clin Immunol. 2014; 133: 291-308
        • Gupta R.
        • Holdford D.
        • Bilaver L.
        • Dyer A.
        • Holl J.L.
        • Meltzer D.
        The economic impact of childhood food allergy in the United States.
        JAMA Pediatr. 2013; 167: 1026-1031
        • Platts-Mills T.A.
        The allergy epidemics: 1870-2010.
        J Allergy Clin Immunol. 2015; 136: 3-13
        • Galli S.J.
        • Tsai M.
        IgE and mast cells in allergic disease.
        Nat Med. 2012; 18: 693-704
        • Kim H.Y.
        • DeKruyff R.H.
        • Umetsu D.T.
        The many paths to asthma: phenotype shaped by innate and adaptive immunity.
        Nat Immunol. 2010; 11: 577-584
        • Akdis M.
        • Akdis C.A.
        Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens.
        J Allergy Clin Immunol. 2014; 133: 621-631
        • Shamji M.H.
        • Durham S.R.
        Mechanisms of immunotherapy to aeroallergens.
        Clin Exp Allergy. 2011; 41: 1235-1246
        • Oppenheimer J.J.
        • Nelson H.S.
        • Bock S.A.
        • Christensen F.
        • Leung D.Y.
        Treatment of peanut allergy with rush immunotherapy.
        J Allergy Clin Immunol. 1992; 90: 256-262
        • Nelson H.S.
        • Lahr J.
        • Rule R.
        • Bock A.
        • Leung D.
        Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract.
        J Allergy Clin Immunol. 1997; 99: 744-751
        • Mondoulet L.
        • Dioszeghy V.
        • Vanoirbeek J.A.
        • Nemery B.
        • Dupont C.
        • Benhamou P.H.
        Epicutaneous immunotherapy using a new epicutaneous delivery system in mice sensitized to peanuts.
        Int Arch Allergy Immunol. 2011; 154: 299-309
        • Jones S.M.
        • Burks A.W.
        • Dupont C.
        State of the art on food allergen immunotherapy: oral, sublingual, and epicutaneous.
        J Allergy Clin Immunol. 2014; 133: 318-323
        • Keet C.A.
        • Frischmeyer-Guerrerio P.A.
        • Thyagarajan A.
        • Schroeder J.T.
        • Hamilton R.G.
        • Boden S.
        • et al.
        The safety and efficacy of sublingual and oral immunotherapy for milk allergy.
        J Allergy Clin Immunol. 2012; 129 (e1-5): 448-455
        • Burks A.W.
        • Jones S.M.
        • Wood R.A.
        • Fleischer D.M.
        • Sicherer S.H.
        • Lindblad R.W.
        • et al.
        Oral immunotherapy for treatment of egg allergy in children.
        N Engl J Med. 2012; 367: 233-243
        • Bauer R.N.
        • Manohar M.
        • Singh A.M.
        • Jay D.C.
        • Nadeau K.C.
        The future of biologics: applications for food allergy.
        J Allergy Clin Immunol. 2015; 135: 312-323
        • Broide D.H.
        Immunomodulation of allergic disease.
        Annu Rev Med. 2009; 60: 279-291
        • Casale T.
        • Stokes J.
        Immunomodulators for allergic respiratory disorders.
        J Allergy Clin Immunol. 2008; 121: 288-296
        • Schimke L.F.
        • Sawalle-Belohradsky J.
        • Roesler J.
        • Wollenberg A.
        • Rack A.
        • Borte M.
        • et al.
        Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis.
        J Allergy Clin Immunol. 2010; 126: 611-617.e1
        • Minegishi Y.
        • Saito M.
        • Tsuchiya S.
        • Tsuge I.
        • Takada H.
        • Hara T.
        • et al.
        Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome.
        Nature. 2007; 448: 1058-1062
        • Holland S.M.
        • DeLeo F.R.
        • Elloumi H.Z.
        • Hsu A.P.
        • Uzel G.
        • Brodsky N.
        • et al.
        STAT3 mutations in the hyper-IgE syndrome.
        N Engl J Med. 2007; 357: 1608-1619
        • Renner E.D.
        • Rylaarsdam S.
        • Anover-Sombke S.
        • Rack A.L.
        • Reichenbach J.
        • Carey J.C.
        • et al.
        Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome.
        J Allergy Clin Immunol. 2008; 122: 181-187
        • Al Khatib S.
        • Keles S.
        • Garcia-Lloret M.
        • Karakoc-Aydiner E.
        • Reisli I.
        • Artac H.
        • et al.
        Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome.
        J Allergy Clin Immunol. 2009; 124 (e1-5): 342-348
        • Keles S.
        • Charbonnier L.M.
        • Kabaleeswaran V.
        • Reisli I.
        • Genel F.
        • Gulez N.
        • et al.
        Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17 cell differentiation.
        J Allergy Clin Immunol. 2016; 138: 1384-1394.e2
        • Bielinska A.U.
        • Gerber M.
        • Blanco L.P.
        • Makidon P.E.
        • Janczak K.W.
        • Beer M.
        • et al.
        Induction of Th17 cellular immunity with a novel nanoemulsion adjuvant.
        Crit Rev Immunol. 2010; 30: 189-199
        • Bielinska A.U.
        • Makidon P.E.
        • Janczak K.W.
        • Blanco L.P.
        • Swanson B.
        • Smith D.M.
        • et al.
        Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.
        J Immunol. 2014; 192: 2722-2733
        • Lindell D.M.
        • Morris S.B.
        • White M.P.
        • Kallal L.E.
        • Lundy P.K.
        • Hamouda T.
        • et al.
        A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease.
        PLoS One. 2011; 6: e21823
        • Makidon P.E.
        • Belyakov I.M.
        • Blanco L.P.
        • Janczak K.W.
        • Landers J.
        • Bielinska A.U.
        • et al.
        Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.
        Eur J Immunol. 2012; 42: 2073-2086
        • Makidon P.E.
        • Bielinska A.U.
        • Nigavekar S.S.
        • Janczak K.W.
        • Knowlton J.
        • Scott A.J.
        • et al.
        Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine.
        PLoS One. 2008; 3: e2954
        • Myc A.
        • Kukowska-Latallo J.F.
        • Bielinska A.U.
        • Cao P.
        • Myc P.P.
        • Janczak K.
        • et al.
        Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion.
        Vaccine. 2003; 21: 3801-3814
        • Walley K.R.
        • Lukacs N.W.
        • Standiford T.J.
        • Strieter R.M.
        • Kunkel S.L.
        Balance of inflammatory cytokines related to severity and mortality of murine sepsis.
        Infect Immun. 1996; 64: 4733-4738
        • Li X.M.
        • Serebrisky D.
        • Lee S.Y.
        • Huang C.K.
        • Bardina L.
        • Schofield B.H.
        • et al.
        A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses.
        J Allergy Clin Immunol. 2000; 106: 150-158
        • Rodriguez B.
        • Prioult G.
        • Hacini-Rachinel F.
        • Moine D.
        • Bruttin A.
        • Ngom-Bru C.
        • et al.
        Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response.
        FEMS Microbiol Ecol. 2012; 79: 192-202
        • Brewer J.M.
        • Conacher M.
        • Hunter C.A.
        • Mohrs M.
        • Brombacher F.
        • Alexander J.
        Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling.
        J Immunol. 1999; 163: 6448-6454
        • Pichavant M.
        • Goya S.
        • Hamelmann E.
        • Gelfand E.W.
        • Umetsu D.T.
        Animal models of airway sensitization.
        Curr Protoc Immunol. 2007; (Chapter 15:Unit 15.8)
        • Ahrens R.
        • Osterfeld H.
        • Wu D.
        • Chen C.Y.
        • Arumugam M.
        • Groschwitz K.
        • et al.
        Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice.
        Am J Pathol. 2012; 180: 1535-1546
        • Hikida M.
        • Takai T.
        • Ohmori H.
        Requirements of a costimulus for IL-4-induced IgE class switching in murine B cells activated via antigen receptors: effectiveness of 8-mercaptoguanosine.
        J Immunol. 1996; 156: 2730-2736
        • Robinson M.K.
        • Babcock L.S.
        • Horn P.A.
        • Kawabata T.T.
        Specific antibody responses to subtilisin Carlsberg (Alcalase) in mice: development of an intranasal exposure model.
        Fundam Appl Toxicol. 1996; 34: 15-24
        • Smit J.J.
        • Willemsen K.
        • Hassing I.
        • Fiechter D.
        • Storm G.
        • van Bloois L.
        • et al.
        Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses.
        PLoS One. 2011; 6: e28917
        • Berin M.C.
        • Wang W.
        Reduced severity of peanut-induced anaphylaxis in TLR9-deficient mice is associated with selective defects in humoral immunity.
        Mucosal Immunol. 2013; 6: 114-121
        • Reber L.L.
        • Marichal T.
        • Mukai K.
        • Kita Y.
        • Tokuoka S.M.
        • Roers A.
        • et al.
        Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice.
        J Allergy Clin Immunol. 2013; 132 (e1-11): 881-888
        • Baldwin S.L.
        • Shaverdian N.
        • Goto Y.
        • Duthie M.S.
        • Raman V.S.
        • Evers T.
        • et al.
        Enhanced humoral and Type 1 cellular immune responses with Fluzone adjuvanted with a synthetic TLR4 agonist formulated in an emulsion.
        Vaccine. 2009; 27: 5956-5963
        • Cauwelaert N.D.
        • Desbien A.L.
        • Hudson T.E.
        • Pine S.O.
        • Reed S.G.
        • Coler R.N.
        • et al.
        The TLR4 agonist vaccine adjuvant, GLA-SE, requires canonical and atypical mechanisms of action for TH1 induction.
        PLoS One. 2016; 11: e0146372
        • McAleer J.P.
        • Vella A.T.
        Educating CD4 T cells with vaccine adjuvants: lessons from lipopolysaccharide.
        Trends Immunol. 2010; 31: 429-435
        • Marrack P.
        • McKee A.S.
        • Munks M.W.
        Towards an understanding of the adjuvant action of aluminium.
        Nat Rev Immunol. 2009; 9: 287-293
        • Rimaniol A.C.
        • Gras G.
        • Verdier F.
        • Capel F.
        • Grigoriev V.B.
        • Porcheray F.
        • et al.
        Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type.
        Vaccine. 2004; 22: 3127-3135
        • Bielinska A.U.
        • O'Konek J.J.
        • Janczak K.W.
        • Baker Jr., J.R.
        Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant.
        Vaccine. 2016; 34: 4017-4024
        • Srivastava K.D.
        • Siefert A.
        • Fahmy T.M.
        • Caplan M.J.
        • Li X.M.
        • Sampson H.A.
        Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy.
        J Allergy Clin Immunol. 2016; 138: 536-543.e4
        • Mantis N.J.
        • Rol N.
        • Corthesy B.
        Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.
        Mucosal Immunol. 2011; 4: 603-611
        • Schnyder-Candrian S.
        • Togbe D.
        • Couillin I.
        • Mercier I.
        • Brombacher F.
        • Quesniaux V.
        • et al.
        Interleukin-17 is a negative regulator of established allergic asthma.
        J Exp Med. 2006; 203: 2715-2725
        • Newcomb D.C.
        • Boswell M.G.
        • Huckabee M.M.
        • Goleniewska K.
        • Dulek D.E.
        • Reiss S.
        • et al.
        IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner.
        J Immunol. 2012; 188: 1027-1035
        • Newcomb D.C.
        • Peebles Jr., R.S.
        Th17-mediated inflammation in asthma.
        Curr Opin Immunol. 2013; 25: 755-760
        • Mukherjee S.
        • Lindell D.M.
        • Berlin A.A.
        • Morris S.B.
        • Shanley T.P.
        • Hershenson M.B.
        • et al.
        IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease.
        Am J Pathol. 2011; 179: 248-258
        • Jin W.
        • Dong C.
        IL-17 cytokines in immunity and inflammation.
        Emerg Microbes Infect. 2013; 2: e60
        • Yang B.H.
        • Hagemann S.
        • Mamareli P.
        • Lauer U.
        • Hoffmann U.
        • Beckstette M.
        • et al.
        Foxp3 T cells expressing RORgammat represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation.
        Mucosal Immunol. 2016; 9: 444-457
        • Lajoie S.
        • Lewkowich I.
        • Herman N.S.
        • Sproles A.
        • Pesce J.T.
        • Wynn T.A.
        • et al.
        IL-21 receptor signalling partially mediates Th2-mediated allergic airway responses.
        Clin Exp Allergy. 2014; 44: 976-985
        • Taube C.
        • Tertilt C.
        • Gyulveszi G.
        • Dehzad N.
        • Kreymborg K.
        • Schneeweiss K.
        • et al.
        IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease.
        PLoS One. 2011; 6: e21799
        • Lewkowich I.P.
        • Herman N.S.
        • Schleifer K.W.
        • Dance M.P.
        • Chen B.L.
        • Dienger K.M.
        • et al.
        CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function.
        J Exp Med. 2005; 202: 1549-1561
        • Palomares O.
        • Martin-Fontecha M.
        • Lauener R.
        • Traidl-Hoffmann C.
        • Cavkaytar O.
        • Akdis M.
        • et al.
        Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-beta.
        Genes Immun. 2014; 15: 511-520
        • Nasser R.
        • Pelegrin M.
        • Plays M.
        • Gros L.
        • Piechaczyk M.
        Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies.
        Blood. 2013; 121: 1102-1111
        • Qin L.
        • Jiang G.
        • Han J.
        • Letvin N.L.
        Regulatory T cells modulate DNA vaccine immunogenicity at early time via functional CD4(+) T cells and antigen duration.
        Front Immunol. 2015; 6: 510
        • Polukort S.H.
        • Rovatti J.
        • Carlson L.
        • Thompson C.
        • Ser-Dolansky J.
        • Kinney S.R.
        • et al.
        IL-10 enhances IgE-mediated mast cell responses and is essential for the development of experimental food allergy in IL-10-deficient mice.
        J Immunol. 2016; 196: 4865-4876
        • Schulten V.
        • Tripple V.
        • Aasbjerg K.
        • Backer V.
        • Lund G.
        • Wurtzen P.A.
        • et al.
        Distinct modulation of allergic T cell responses by subcutaneous vs. sublingual allergen-specific immunotherapy.
        Clin Exp Allergy. 2016; 46: 439-448
        • Schulten V.
        • Tripple V.
        • Sidney J.
        • Greenbaum J.
        • Frazier A.
        • Alam R.
        • et al.
        Association between specific timothy grass antigens and changes in TH1- and TH2-cell responses following specific immunotherapy.
        J Allergy Clin Immunol. 2014; 134: 1076-1083
        • Hinz D.
        • Seumois G.
        • Gholami A.M.
        • Greenbaum J.A.
        • Lane J.
        • White B.
        • et al.
        Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.
        Clin Exp Allergy. 2016; 46: 705-719
        • Ryan J.F.
        • Hovde R.
        • Glanville J.
        • Lyu S.C.
        • Ji X.
        • Gupta S.
        • et al.
        Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets.
        Proc Natl Acad Sci U S A. 2016; 113: E1286-E1295
        • Gould H.J.
        • Ramadani F.
        IgE responses in mouse and man and the persistence of IgE memory.
        Trends Immunol. 2015; 36: 40-48
        • Makidon P.E.
        • Knowlton J.
        • Groom 2nd, J.V.
        • Blanco L.P.
        • LiPuma J.J.
        • Bielinska A.U.
        • et al.
        Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine.
        Med Microbiol Immunol. 2010; 199: 81-92
        • Stanberry L.R.
        • Simon J.K.
        • Johnson C.
        • Robinson P.L.
        • Morry J.
        • Flack M.R.
        • et al.
        Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens.
        Vaccine. 2012; 30: 307-316
        • Dioszeghy V.
        • Mondoulet L.
        • Puteaux E.
        • Dhelft V.
        • Ligouis M.
        • Plaquet C.
        • et al.
        Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut.
        Cell Mol Immunol. 2017; 14: 770-782
        • Vickery B.P.
        • Berglund J.P.
        • Burk C.M.
        • Fine J.P.
        • Kim E.H.
        • Kim J.I.
        • et al.
        Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective.
        J Allergy Clin Immunol. 2017; 139: 173-181.e8
        • Vickery B.P.
        • Scurlock A.M.
        • Kulis M.
        • Steele P.H.
        • Kamilaris J.
        • Berglund J.P.
        • et al.
        Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy.
        J Allergy Clin Immunol. 2014; 133: 468-475
        • Narisety S.D.
        • Frischmeyer-Guerrerio P.A.
        • Keet C.A.
        • Gorelik M.
        • Schroeder J.
        • Hamilton R.G.
        • et al.
        A randomized, double-blind, placebo-controlled pilot study of sublingual versus oral immunotherapy for the treatment of peanut allergy.
        J Allergy Clin Immunol. 2015; 135 (e1-6): 1275-1282