Proteome analysis of mast cell releasates reveals a role for chymase in the regulation of coagulation factor XIIIA levels via proteolytic degradation


      Mast cells are significantly involved in IgE-mediated allergic reactions; however, their roles in health and disease are incompletely understood.


      We aimed to define the proteome contained in mast cell releasates on activation to better understand the factors secreted by mast cells that are relevant to the contribution of mast cells in diseases.


      Bone marrow–derived cultured mast cells (BMCMCs) and peritoneal cell–derived mast cells were used as “surrogates” for mucosal and connective tissue mast cells, respectively, and their releasate proteomes were analyzed by mass spectrometry.


      Our studies showed that BMCMCs and peritoneal cell–derived mast cells produced substantially different releasates following IgE-mediated activation. Moreover, we observed that the transglutaminase coagulation factor XIIIA (FXIIIA) was one of the most abundant proteins contained in the BMCMC releasates. Mast cell–deficient mice exhibited increased FXIIIA plasma and activity levels as well as reduced bleeding times, indicating that mast cells are more efficient in their ability to downregulate FXIIIA than in contributing to its amounts and functions in homeostatic conditions. We found that human chymase and mouse mast cell protease-4 (the mouse homologue of human chymase) had the ability to reduce FXIIIA levels and function via proteolytic degradation. Moreover, we found that chymase deficiency led to increased FXIIIA amounts and activity, as well as reduced bleeding times in homeostatic conditions and during sepsis.


      Our study indicates that the mast cell protease content can shape its releasate proteome. Moreover, we found that chymase plays an important role in the regulation of FXIIIA via proteolytic degradation.

      Key words

      Abbreviations used:

      BMCMCs (Bone marrow derived–cultured mast cells), CLP (Cecal ligation and puncture), CPA (Carboxypeptidase A), CTMC (Connective tissue mast cell), FXIIIA (Coagulation factor XIIIA), MMC (Mucosal mast cell), mMCP (Mouse mast cell protease), PCMCs (Peritoneal cell–derived mast cells)
      To read this article in full you will need to make a payment


      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Galli S.J.
        • Tsai M.
        • Marichal T.
        • Tchougounova E.
        • Reber L.L.
        • Pejler G.
        Approaches for analyzing the roles of mast cells and their proteases in vivo.
        Adv Immunol. 2015; 126: 45-127
        • Pejler G.
        • Ronnberg E.
        • Waern I.
        • Wernersson S.
        Mast cell proteases: multifaceted regulators of inflammatory disease.
        Blood. 2010; 115: 4981-4990
        • Andersson M.K.
        • Karlson U.
        • Hellman L.
        The extended cleavage specificity of the rodent beta-chymases rMCP-1 and mMCP-4 reveal major functional similarities to the human mast cell chymase.
        Mol Immunol. 2008; 45: 766-775
        • Piliponsky A.M.
        • Chen C.C.
        • Rios E.J.
        • Treuting P.M.
        • Lahiri A.
        • Abrink M.
        • et al.
        The chymase mouse mast cell protease 4 degrades TNF, limits inflammation, and promotes survival in a model of sepsis.
        Am J Pathol. 2012; 181: 875-886
        • Razin E.
        • Ihle J.N.
        • Seldin D.
        • Mencia-Huerta J.M.
        • Katz H.R.
        • LeBlanc P.A.
        • et al.
        Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan.
        J Immunol. 1984; 132: 1479-1486
        • Malbec O.
        • Roget K.
        • Schiffer C.
        • Iannascoli B.
        • Dumas A.R.
        • Arock M.
        • et al.
        Peritoneal cell-derived mast cells: an in vitro model of mature serosal-type mouse mast cells.
        J Immunol. 2007; 178: 6465-6475
        • Eckert R.L.
        • Kaartinen M.T.
        • Nurminskaya M.
        • Belkin A.M.
        • Colak G.
        • Johnson G.V.
        • et al.
        Transglutaminase regulation of cell function.
        Physiol Rev. 2014; 94: 383-417
        • Bagoly Z.
        • Katona E.
        • Muszbek L.
        Factor XIII and inflammatory cells.
        Thromb Res. 2012; 129: S77-S81
        • Duckert F.
        Documentation of the plasma factor XIII deficiency in man.
        Ann N Y Acad Sci. 1972; 202: 190-199
        • Douaiher J.
        • Succar J.
        • Lancerotto L.
        • Gurish M.F.
        • Orgill D.P.
        • Hamilton M.J.
        • et al.
        Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing.
        Adv Immunol. 2014; 122: 211-252
        • Muszbek L.
        • Bereczky Z.
        • Bagoly Z.
        • Komaromi I.
        • Katona E.
        Factor XIII: a coagulation factor with multiple plasmatic and cellular functions.
        Physiol Rev. 2011; 91: 931-972
        • Katona E.E.
        • Ajzner E.
        • Toth K.
        • Karpati L.
        • Muszbek L.
        Enzyme-linked immunosorbent assay for the determination of blood coagulation factor XIII A-subunit in plasma and in cell lysates.
        J Immunol Methods. 2001; 258: 127-135
        • Cordell P.A.
        • Kile B.T.
        • Standeven K.F.
        • Josefsson E.C.
        • Pease R.J.
        • Grant P.J.
        Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for subcellular trafficking and secretion.
        Blood. 2010; 115: 2674-2681
        • Sarvary A.
        • Szucs S.
        • Balogh I.
        • Becsky A.
        • Bardos H.
        • Kavai M.
        • et al.
        Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis.
        Cell Immunol. 2004; 228: 81-90
        • Lilla J.N.
        • Chen C.C.
        • Mukai K.
        • BenBarak M.J.
        • Franco C.B.
        • Kalesnikoff J.
        • et al.
        Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice.
        Blood. 2011; 118: 6930-6938
        • Wada T.
        • Ishiwata K.
        • Koseki H.
        • Ishikura T.
        • Ugajin T.
        • Ohnuma N.
        • et al.
        Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks.
        J Clin Invest. 2010; 120: 2867-2875
        • Lauer P.
        • Metzner H.J.
        • Zettlmeissl G.
        • Li M.
        • Smith A.G.
        • Lathe R.
        • et al.
        Targeted inactivation of the mouse locus encoding coagulation factor XIII-A: hemostatic abnormalities in mutant mice and characterization of the coagulation deficit.
        Thromb Haemost. 2002; 88: 967-974
        • Mallen-St Clair J.
        • Pham C.T.
        • Villalta S.A.
        • Caughey G.H.
        • Wolters P.J.
        Mast cell dipeptidyl peptidase I mediates survival from sepsis.
        J Clin Invest. 2004; 113: 628-634
        • Zhao W.
        • Oskeritzian C.A.
        • Pozez A.L.
        • Schwartz L.B.
        Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines.
        J Immunol. 2005; 175: 2635-2642
        • Kato A.
        • Chustz R.T.
        • Ogasawara T.
        • Kulka M.
        • Saito H.
        • Schleimer R.P.
        • et al.
        Dexamethasone and FK506 inhibit expression of distinct subsets of chemokines in human mast cells.
        J Immunol. 2009; 182: 7233-7243
        • Roy A.
        • Ganesh G.
        • Sippola H.
        • Bolin S.
        • Sawesi O.
        • Dagalv A.
        • et al.
        Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation.
        J Biol Chem. 2014; 289: 237-250
        • Tchougounova E.
        • Pejler G.
        • Abrink M.
        The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue: a role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover.
        J Exp Med. 2003; 198: 423-431
        • Stevens R.L.
        • Friend D.S.
        • McNeil H.P.
        • Schiller V.
        • Ghildyal N.
        • Austen K.F.
        Strain-specific and tissue-specific expression of mouse mast cell secretory granule proteases.
        Proc Natl Acad Sci U S A. 1994; 91: 128-132
        • Ge Y.
        • Jippo T.
        • Lee Y.M.
        • Adachi S.
        • Kitamura Y.
        Independent influence of strain difference and mi transcription factor on the expression of mouse mast cell chymases.
        Am J Pathol. 2001; 158: 281-292
        • Andersson M.K.
        • Enoksson M.
        • Gallwitz M.
        • Hellman L.
        The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile.
        Int Immunol. 2009; 21: 95-104
        • Zeerleder S.
        • Schroeder V.
        • Lammle B.
        • Wuillemin W.A.
        • Hack C.E.
        • Kohler H.P.
        Factor XIII in severe sepsis and septic shock.
        Thromb Res. 2007; 119: 311-318
        • Levi M.
        • de Jonge E.
        • van der Poll T.
        • ten Cate H.
        Disseminated intravascular coagulation.
        Thromb Haemost. 1999; 82: 695-705
        • Yamaoka K.
        • Okayama Y.
        • Kaminuma O.
        • Katayama K.
        • Mori A.
        • Tatsumi H.
        • et al.
        Proteomic approach to FcepsilonRI aggregation-initiated signal transduction cascade in human mast cells.
        Int Arch Allergy Immunol. 2009; 149: 73-76
        • de Castro R.O.
        • Zhang J.
        • Groves J.R.
        • Barbu E.A.
        • Siraganian R.P.
        Once phosphorylated, tyrosines in carboxyl terminus of protein-tyrosine kinase Syk interact with signaling proteins, including TULA-2, a negative regulator of mast cell degranulation.
        J Biol Chem. 2012; 287: 8194-8204
        • Bounab Y.
        • Hesse A.M.
        • Iannascoli B.
        • Grieco L.
        • Coute Y.
        • Niarakis A.
        • et al.
        Proteomic analysis of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) interactome in resting and activated primary mast cells [corrected].
        Mol Cell Proteomics. 2013; 12: 2874-2889
        • Lee Y.M.
        • Jippo T.
        • Kim D.K.
        • Katsu Y.
        • Tsujino K.
        • Morii E.
        • et al.
        Alteration of protease expression phenotype of mouse peritoneal mast cells by changing the microenvironment as demonstrated by in situ hybridization histochemistry.
        Am J Pathol. 1998; 153: 931-936
        • Griffin K.
        • Simpson K.
        • Beckers C.
        • Brown J.
        • Vacher J.
        • Ouwehand W.
        • et al.
        Use of a novel floxed mouse to characterise the cellular source of plasma coagulation FXIII-A.
        Lancet. 2015; 385: S39
        • Scudamore C.L.
        • Pennington A.M.
        • Thornton E.
        • McMillan L.
        • Newlands G.F.
        • Miller H.R.
        Basal secretion and anaphylactic release of rat mast cell protease-II (RMCP-II) from ex vivo perfused rat jejunum: translocation of RMCP-II into the gut lumen and its relation to mucosal histology.
        Gut. 1995; 37: 235-241
        • Wastling J.M.
        • Scudamore C.L.
        • Thornton E.M.
        • Newlands G.F.
        • Miller H.R.
        Constitutive expression of mouse mast cell protease-1 in normal BALB/c mice and its up-regulation during intestinal nematode infection.
        Immunology. 1997; 90: 308-313
        • Dvorak A.M.
        • Furitsu T.
        • Kissell-Rainville S.
        • Ishizaka T.
        Ultrastructural identification of human mast cells resembling skin mast cells stimulated to develop in long-term human cord blood mononuclear cells cultured with 3T3 murine skin fibroblasts.
        J Leukoc Biol. 1992; 51: 557-569
        • Schouten M.
        • Wiersinga W.J.
        • Levi M.
        • van der Poll T.
        Inflammation, endothelium, and coagulation in sepsis.
        J Leukoc Biol. 2008; 83: 536-545
        • Bagoly Z.
        • Fazakas F.
        • Komaromi I.
        • Haramura G.
        • Toth E.
        • Muszbek L.
        Cleavage of factor XIII by human neutrophil elastase results in a novel active truncated form of factor XIII A subunit.
        Thromb Haemost. 2008; 99: 668-674
        • Patel K.N.
        • Soubra S.H.
        • Lam F.W.
        • Rodriguez M.A.
        • Rumbaut R.E.
        Polymicrobial sepsis and endotoxemia promote microvascular thrombosis via distinct mechanisms.
        J Thromb Haemost. 2010; 8: 1403-1409
        • Dardik R.
        • Krapp T.
        • Rosenthal E.
        • Loscalzo J.
        • Inbal A.
        Effect of FXIII on monocyte and fibroblast function.
        Cell Physiol Biochem. 2007; 19: 113-120
        • Jayo A.
        • Conde I.
        • Lastres P.
        • Jimenez-Yuste V.
        • Gonzalez-Manchon C.
        Possible role for cellular FXIII in monocyte-derived dendritic cell motility.
        Eur J Cell Biol. 2009; 88: 423-431
        • Nahrendorf M.
        • Hu K.
        • Frantz S.
        • Jaffer F.A.
        • Tung C.H.
        • Hiller K.H.
        • et al.
        Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction.
        Circulation. 2006; 113: 1196-1202
        • Loof T.G.
        • Morgelin M.
        • Johansson L.
        • Oehmcke S.
        • Olin A.I.
        • Dickneite G.
        • et al.
        Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense.
        Blood. 2011; 118: 2589-2598
        • Stankovic K.
        • Sarrot-Reynauld F.
        • Puget M.
        • Massot C.
        • Ninet J.
        • Lorcerie B.
        • et al.
        Systemic mastocytosis: predictable factors of poor prognosis present at the onset of the disease.
        Eur J Intern Med. 2005; 16: 387-390
        • Prieto-Garcia A.
        • Zheng D.
        • Adachi R.
        • Xing W.
        • Lane W.S.
        • Chung K.
        • et al.
        Mast cell restricted mouse and human tryptase.heparin complexes hinder thrombin-induced coagulation of plasma and the generation of fibrin by proteolytically destroying fibrinogen.
        J Biol Chem. 2012; 287: 7834-7844
        • Takabayashi T.
        • Kato A.
        • Peters A.T.
        • Suh L.A.
        • Carter R.
        • Norton J.
        • et al.
        Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps.
        J Allergy Clin Immunol. 2012; 130: 410-420.e5
        • Takabayashi T.
        • Kato A.
        • Peters A.T.
        • Hulse K.E.
        • Suh L.A.
        • Carter R.
        • et al.
        Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps.
        J Allergy Clin Immunol. 2013; 132: 584-592.e4