Advertisement

Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)+ TH2/TH1 cell imbalance, whereas adults acquire CLA+ TH22/TC22 cell subsets

Published:August 01, 2015DOI:https://doi.org/10.1016/j.jaci.2015.05.049

      Background

      Identifying differences and similarities between cutaneous lymphocyte antigen (CLA)+ polarized T-cell subsets in children versus adults with atopic dermatitis (AD) is critical for directing new treatments toward children.

      Objective

      We sought to compare activation markers and frequencies of skin-homing (CLA+) versus systemic (CLA) “polar” CD4 and CD8 T-cell subsets in patients with early pediatric AD, adults with AD, and control subjects.

      Methods

      Flow cytometry was used to measure CD69/inducible costimulator/HLA-DR frequency in memory cell subsets, as well as IFN-γ, IL-13, IL-9, IL-17, and IL-22 cytokines, defining TH1/cytotoxic T (TC) 1, TH2/TC2, TH9/TC9, TH17/TC17, and TH22/TC22 populations in CD4 and CD8 cells, respectively. We compared peripheral blood from 19 children less than 5 years old and 42 adults with well-characterized moderate-to-severe AD, as well as age-matched control subjects (17 children and 25 adults).

      Results

      Selective inducible costimulator activation (P < .001) was seen in children. CLA+ TH2 T cells were markedly expanded in both children and adults with AD compared with those in control subjects, but decreases in CLA+ TH1 T-cell numbers were greater in children with AD (17% vs 7.4%, P = .007). Unlike in adults, no imbalances were detected in CLA T cells from pediatric patients with AD nor were there altered frequencies of TH22 T cells within the CLA+ or CLA compartments. Adults with AD had increased frequencies of IL-22–producing CD4 and CD8 T cells within the skin-homing population, compared with controls (9.5% vs 4.5% and 8.6% vs 2.4%, respectively; P < .001), as well as increased HLA-DR activation (P < .01).

      Conclusions

      These data suggest that TH2 activation within skin-homing T cells might drive AD in children and that reduced counterregulation by TH1 T cells might contribute to excess TH2 activation. TH22 “spreading” of AD is not seen in young children and might be influenced by immune development, disease chronicity, or recurrent skin infections.

      Key words

      Abbreviations used:

      AD (Atopic dermatitis), CLA (Cutaneous lymphocyte antigen), ICOS (Inducible costimulator), PE (Phycoerythrin), PMA (Phorbol 12-myristate 13-acetate), TC (Cytotoxic T), TCM (Central memory T), TEM (Effector memory T)
      To read this article in full you will need to make a payment

      References

        • Lyons J.J.
        • Milner J.D.
        • Stone K.D.
        Atopic dermatitis in children: clinical features, pathophysiology, and treatment.
        Immunol Allergy Clin North Am. 2015; 35: 161-183
        • Flohr C.
        • Mann J.
        New insights into the epidemiology of childhood atopic dermatitis.
        Allergy. 2014; 69: 3-16
        • von Kobyletzki L.B.
        • Svensson A.
        • Apfelbacher C.
        • Schmitt J.
        Which factors predict remission of infant atopic dermatitis? A systematic review.
        Br J Dermatol. 2014; 170: E52-E53
        • Kelleher M.
        • Dunn-Galvin A.
        • Hourihane J.O.
        • Murray D.
        • Campbell L.E.
        • Irwin McLean W.H.
        • et al.
        Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year.
        J Allergy Clin Immunol. 2015; 135: 930-935.e1
        • Akdis C.A.
        • Akdis M.
        • Bieber T.
        • Bindslev-Jensen C.
        • Boguniewicz M.
        • Eigenmann P.
        • et al.
        Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report.
        J Allergy Clin Immunol. 2006; 118: 152-169
        • Nagaraja
        • Kanwar A.J.
        • Dhar S.
        • Singh S.
        Frequency and significance of minor clinical features in various age-related subgroups of atopic dermatitis in children.
        Pediatr Dermatol. 1996; 13: 10-13
        • Folster-Holst R.
        Management of atopic dermatitis: are there differences between children and adults?.
        J Eur Acad Dermatol Venereol. 2014; 28: 5-8
        • Clark R.A.
        Skin-resident T cells: the ups and downs of on site immunity.
        J Invest Dermatol. 2010; 130: 362-370
        • Thornton C.A.
        • Upham J.W.
        • Wikstrom M.E.
        • Holt B.J.
        • White G.P.
        • Sharp M.J.
        • et al.
        Functional maturation of CD4+CD25+CTLA4+CD45RA+ T regulatory cells in human neonatal T cell responses to environmental antigens/allergens.
        J Immunol. 2004; 173: 3084-3092
        • Gasparoni A.
        • Ciardelli L.
        • Avanzini A.
        • Castellazzi A.M.
        • Carini R.
        • Rondini G.
        • et al.
        Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults.
        Biol Neonate. 2003; 84: 297-303
        • Saule P.
        • Trauet J.
        • Dutriez V.
        • Lekeux V.
        • Dessaint J.P.
        • Labalette M.
        Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment.
        Mech Ageing Dev. 2006; 127: 274-281
        • Ferran M.
        • Santamaria-Babi L.F.
        Pathological mechanisms of skin homing T cells in atopic dermatitis.
        World Allergy Organ J. 2010; 3: 44-47
        • Picker L.J.
        • Michie S.A.
        • Rott L.S.
        • Butcher E.C.
        A unique phenotype of skin-associated lymphocytes in humans. Preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites.
        Am J Pathol. 1990; 136: 1053-1068
        • Jung T.
        • Schulz S.
        • Zachmann K.
        • Neumann C.
        Expansion and proliferation of skin-homing T cells in atopic dermatitis as assessed at the single cell level.
        Int Arch Allergy Immunol. 2003; 130: 143-149
        • Babi L.F.
        • Picker L.J.
        • Soler M.T.
        • Drzimalla K.
        • Flohr P.
        • Blaser K.
        • et al.
        Circulating allergen-reactive T-cells from patients with atopic-dermatitis and allergic contact-dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen.
        J Exp Med. 1995; 181: 1935-1940
        • Akdis M.
        • Akdis C.A.
        • Weigl L.
        • Disch R.
        • Blaser K.
        Skin-homing, CLA+ memory T cells are activated in atopic dermatitis and regulate IgE by an IL-13-dominated cytokine pattern: IgG4 counter-regulation by CLA- memory T cells.
        J Immunol. 1997; 159: 4611-4619
        • Abernathycarver K.J.
        • Sampson H.A.
        • Picker L.J.
        • Leung D.Y.M.
        Milk-induced eczema is associated with the expansion of T-cells expressing cutaneous lymphocyte antigen.
        J Clin Invest. 1995; 95: 913-918
        • Ferran M.
        • Romeu E.R.
        • Rincon C.
        • Sagrista M.
        • Arnau A.M.G.
        • Celada A.
        • et al.
        Circulating CLA+ T lymphocytes as peripheral cell biomarkers in T-cell-mediated skin diseases.
        Exp Dermatol. 2013; 22: 439-442
        • van der Velden V.H.
        • Laan M.P.
        • Baert M.R.
        • de Waal Malefyt R.
        • Neijens H.J.
        • Savelkoul H.F.
        Selective development of a strong Th2 cytokine profile in high-risk children who develop atopy: risk factors and regulatory role of IFN-gamma, IL-4 and IL-10.
        Clin Exp Allergy. 2001; 31: 997-1006
        • Herberth G.
        • Heinrich J.
        • Roder S.
        • Figl A.
        • Weiss M.
        • Diez U.
        • et al.
        Reduced IFN-gamma- and enhanced IL-4-producing CD4+ cord blood T cells are associated with a higher risk for atopic dermatitis during the first 2 yr of life.
        Pediatr Allergy Immunol. 2010; 21: 5-13
        • Tang M.L.
        • Kemp A.S.
        • Thorburn J.
        • Hill D.J.
        Reduced interferon-gamma secretion in neonates and subsequent atopy.
        Lancet. 1994; 344: 983-985
        • Kaminishi K.
        • Soma Y.
        • Kawa Y.
        • Mizoguchi M.
        Flow cytometric analysis of IL-4, IL-13 and IFN-gamma expression in peripheral blood mononuclear cells and detection of circulating IL-13 in patients with atopic dermatitis provide evidence for the involvement of type 2 cytokines in the disease.
        J Dermatol Sci. 2002; 29: 19-25
        • Kawamoto N.
        • Kaneko H.
        • Takemura M.
        • Seishima M.
        • Sakurai S.
        • Fukao T.
        • et al.
        Age-related changes in intracellular cytokine profiles and Th2 dominance in allergic children.
        Pediatr Allergy Immunol. 2006; 17: 125-133
        • La Grutta S.
        • Richiusa P.
        • Pizzolanti G.
        • Mattina A.
        • Pajno G.B.
        • Citarrella R.
        • et al.
        CD4(+)IL-13(+) cells in peripheral blood well correlates with the severity of atopic dermatitis in children.
        Allergy. 2005; 60: 391-395
        • Campbell D.E.
        • Fryga A.S.
        • Bol S.
        • Kemp A.S.
        Intracellular interferon-gamma (IFN-gamma) production in normal children and children with atopic dermatitis.
        Clin Exp Immunol. 1999; 115: 377-382
        • Katsunuma T.
        • Kawahara H.
        • Yuki K.
        • Akasawa A.
        • Saito H.
        Impaired interferon-gamma production in a subset population of severe atopic dermatitis.
        Int Arch Allergy Immunol. 2004; 134: 240-247
        • Machura E.
        • Mazur B.
        • Kwiecien J.
        • Karczewska K.
        Intracellular production of IL-2, IL-4, IFN-gamma, and TNF-alpha by peripheral blood CD3+ and CD4+ T cells in children with atopic dermatitis.
        Eur J Pediatr. 2007; 166: 789-795
        • Antunez C.
        • Torres M.J.
        • Corzo J.L.
        • Pena R.R.
        • Mayorga C.
        • Jurado A.
        • et al.
        Different lymphocyte markers and cytokine expression in peripheral blood mononuclear cells in children with acute atopic dermatitis.
        Allergol Immunopathol (Madr). 2004; 32: 252-258
        • Leonardi S.
        • Rotolo N.
        • Vitaliti G.
        • Spicuzza L.
        • La Rosa M.
        IgE values and T-lymphocyte subsets in children with atopic eczema/dermatitis syndrome.
        Allergy Asthma Proc. 2007; 28: 529-534
        • Antunez C.
        • Torres M.J.
        • Mayorga C.
        • Corzo J.L.
        • Jurado A.
        • Santamaria-Babi L.F.
        • et al.
        Cytokine production, activation marker, and skin homing receptor in children with atopic dermatitis and bronchial asthma.
        Pediatr Allergy Immunol. 2006; 17: 166-174
        • Chernyshov P.V.
        Expression of activation inducer molecule (CD69) on CD3+CD8+ T lymphocytes in children with atopic dermatitis correlates with SCORAD but not with the age of patients.
        J Eur Acad Dermatol Venereol. 2009; 23: 462-463
        • Jung T.
        • Lack G.
        • Schauer U.
        • Uberuck W.
        • Renz H.
        • Gelfand E.W.
        • et al.
        Decreased frequency of interferon-gamma- and interleukin-2-producing cells in patients with atopic diseases measured at the single cell level.
        J Allergy Clin Immunol. 1995; 96: 515-527
        • Czarnowicki T.
        • Shemer A.
        • Malajian D.
        • Xu H.
        • Zheng X.
        • Khattri S.
        • et al.
        Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population.
        J Allergy Clin Immunol. 2015; 136: 104-115.e7
        • Sallusto F.
        • Geginat J.
        • Lanzavecchia A.
        Central memory and effector memory T cell subsets: function, generation, and maintenance.
        Annu Rev Immunol. 2004; 22: 745-763
        • Tafuri A.
        • Shahinian A.
        • Bladt F.
        • Yoshinaga S.K.
        • Jordana M.
        • Wakeham A.
        • et al.
        ICOS is essential for effective T-helper-cell responses.
        Nature. 2001; 409: 105-109
        • Beier K.C.
        • Hutloff A.
        • Dittrich A.M.
        • Heuck C.
        • Rauch A.
        • Buchner K.
        • et al.
        Induction, binding specificity and function of human ICOS.
        Eur J Immunol. 2000; 30: 3707-3717
        • Ferenczi K.
        • Burack L.
        • Pope M.
        • Krueger J.G.
        • Austin L.M.
        CD69, HLA-DR and the IL-2R identify persistently activated T cells in psoriasis vulgaris lesional skin: blood and skin comparisons by flow cytometry.
        J Autoimmun. 2000; 14: 63-78
        • Biselli R.
        • Matricardi P.M.
        • Damelio R.
        • Fattorossi A.
        Multiparametric flow cytometric analysis of the kinetics of surface-molecule expression after polyclonal activation of human peripheral-blood T lymphocytes.
        Scand J Immunol. 1992; 35: 439-447
        • Gittler J.K.
        • Shemer A.
        • Suarez-Farinas M.
        • Fuentes-Duculan J.
        • Gulewicz K.J.
        • Wang C.Q.F.
        • et al.
        Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis.
        J Allergy Clin Immunol. 2012; 130: 1344-1354
        • Nograles K.E.
        • Zaba L.C.
        • Shemer A.
        • Fuentes-Duculan J.
        • Cardinale I.
        • Kikuchi T.
        • et al.
        IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing T(H)17 T cells.
        J Allergy Clin Immunol. 2009; 123: 1244-1252
        • Czarnowicki T.
        • Krueger J.G.
        • Guttman-Yassky E.
        Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications.
        J Allergy Clin Immunol Pract. 2014; 2: 371-381
        • Guttman-Yassky E.
        • Nograles K.E.
        • Krueger J.G.
        Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts.
        J Allergy Clin Immunol. 2011; 127: 1110-1118
        • Cossarizza A.
        • Ortolani C.
        • Paganelli R.
        • Barbieri D.
        • Monti D.
        • Sansoni P.
        • et al.
        CD45 isoforms expression on CD4(+) and CD8(+) T cells throughout life, from newborns to centenarians: Implications for T cell memory.
        Mech Ageing Dev. 1996; 86: 173-195
        • Farber D.L.
        • Yudanin N.A.
        • Restifo N.P.
        Human memory T cells: generation, compartmentalization and homeostasis.
        Nat Rev Immunol. 2014; 14: 24-35
        • Boguniewicz M.
        • Leung D.Y.M.
        Atopic dermatitis: a disease of altered skin barrier and immune dysregulation.
        Immunol Rev. 2011; 242: 233-246
        • Bunikowski R.
        • Mielke M.E.
        • Skarabis H.
        • Worm M.
        • Anagnostopoulos I.
        • Kolde G.
        • et al.
        Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis.
        J Allergy Clin Immunol. 2000; 105: 814-819
        • Ong P.Y.
        • Ohtake T.
        • Brandt C.
        • Strickland I.
        • Boguniewicz M.
        • Ganz T.
        • et al.
        Endogenous antimicrobial peptides and skin infections in atopic dermatitis.
        N Engl J Med. 2002; 347: 1151-1160
        • Kong H.H.
        • Segre J.A.
        Skin microbiome: looking back to move forward.
        J Invest Dermatol. 2012; 132: 933-939
        • Maino V.C.
        • Suni M.A.
        • Ruitenberg J.J.
        Rapid flow cytometric method for measuring lymphocyte subset activation.
        Cytometry. 1995; 20: 127-133
        • Reddy M.
        • Eirikis E.
        • Davis C.
        • Davis H.M.
        • Prabhakar U.
        Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function.
        J Immunol Methods. 2004; 293: 127-142
        • Caruso A.
        • Licenziati S.
        • Corulli M.
        • Canaris A.D.
        • DeFrancesco M.A.
        • Fiorentini S.
        • et al.
        Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation.
        Cytometry. 1997; 27: 71-76
        • McAdam A.J.
        • Schweitzer A.N.
        • Sharpe A.H.
        The role of B7 co-stimulation in activation and differentiation of CD4(+) and CD8(+) T cells.
        Immunol Rev. 1998; 165: 231-247
        • Coyle A.J.
        • Lehar S.
        • Lloyd C.
        • Tian J.
        • Delaney T.
        • Manning S.
        • et al.
        The CD28-related molecule ICOS is required for effective T cell-dependent immune responses.
        Immunity. 2000; 13: 95-105
        • Kopf M.
        • Coyle A.J.
        • Schmitz N.
        • Barner M.
        • Oxenius A.
        • Gallimore A.
        • et al.
        Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection.
        J Exp Med. 2000; 192: 53-61
        • McAdam A.J.
        • Greenwald R.J.
        • Levin M.A.
        • Chernova T.
        • Malenkovich N.
        • Ling V.
        • et al.
        ICOS is critical for CD40-mediated antibody class switching.
        Nature. 2001; 409: 102-105
        • Mages H.W.
        • Hutloff A.
        • Heuck C.
        • Buchner K.
        • Himmelbauer H.
        • Oliveri F.
        • et al.
        Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand.
        Eur J Immunol. 2000; 30: 1040-1047
        • Tesciuba A.G.
        • Shilling R.A.
        • Agarwal M.D.
        • Bandukwala H.S.
        • Clay B.S.
        • Moore T.V.
        • et al.
        ICOS costimulation expands Th2 immunity by augmenting migration of lymphocytes to draining lymph nodes.
        J Immunol. 2008; 181: 1019-1024
        • Bunikowski R.
        • Staab D.
        • Kussebi F.
        • Brautigam M.
        • Weidinger G.
        • Renz H.
        • et al.
        Low-dose cyclosporin A microemulsion in children with severe atopic dermatitis: clinical and immunological effects.
        Pediatr Allergy Immunol. 2001; 12: 216-223
        • Czarnowicki T.
        • Fuentes-Duculan J.
        • Gonzalez J.
        • Suárez-Fariñas M.
        • Krueger J.G.
        • Guttman-Yassky E.
        Skin-homing and systemic T-cell subsets show higher activation in atopic dermatitis versus psoriasis.
        J Allergy Clin Immunol. 2015; 136: 208-211
        • Seneviratne S.L.
        • Black A.P.
        • Jones L.
        • Bailey A.S.
        • Ogg G.S.
        The role of skin-homing T cells in extrinsic atopic dermatitis.
        QJM. 2007; 100: 19-27
        • Antunez C.
        • Torres M.J.
        • Mayorga C.
        • Cornejo-Garcia J.A.
        • Santamaria-Babi L.F.
        • Blanca M.
        Different cytokine production and activation marker profiles in circulating cutaneous-lymphocyte-associated antigen(+) T cells from patients with acute or chronic atopic dermatitis.
        Clin Exp Allergy. 2004; 34: 559-566
        • Gonzalez-Amaro R.
        • Cortes J.R.
        • Sanchez-Madrid F.
        • Martin P.
        Is CD69 an effective brake to control inflammatory diseases?.
        Trends Mol Med. 2013; 19: 625-632
        • Toma T.
        • Mizuno K.
        • Okamoto H.
        • Kanegane C.
        • Ohta K.
        • Ikawa Y.
        • et al.
        Expansion of activated eosinophils in infants with severe atopic dermatitis.
        Pediatr Int. 2005; 47: 32-38
        • Thunberg S.
        • Gafvelin G.
        • Nord M.
        • Gronneberg R.
        • Grunewald J.
        • Eklund A.
        • et al.
        Allergen provocation increases TH2-cytokines and FOXP3 expression in the asthmatic lung.
        Allergy. 2010; 65: 311-318
        • Werfel T.
        • Boeker M.
        • Kapp A.
        Rapid expression of the CD69 antigen on T cells and natural killer cells upon antigenic stimulation of peripheral blood mononuclear cell suspensions.
        Allergy. 1997; 52: 465-469
        • Grewe M.
        • Gyufko K.
        • Schopf E.
        • Krutmann J.
        Lesional expression of interferon-gamma in atopic eczema.
        Lancet. 1994; 343: 25-26
        • Moskophidis D.
        • Lechner F.
        • Pircher H.
        • Zinkernagel R.M.
        Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells.
        Nature. 1993; 362: 758-761
        • Zhang X.H.
        • Brunner T.
        • Carter L.
        • Dutton R.W.
        • Rogers P.
        • Bradley L.
        • et al.
        Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis.
        J Exp Med. 1997; 185: 1837-1849
        • Biedermann T.
        • Rocken M.
        • Carballido J.M.
        TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin.
        J Investig Dermatol Symp Proc. 2004; 9: 5-14
        • Kidd P.
        Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.
        Altern Med Rev. 2003; 8: 223-246
        • Gould H.J.
        • Sutton B.J.
        • Beavil A.J.
        • Beavil R.L.
        • McCloskey N.
        • Coker H.A.
        • et al.
        The biology of IGE and the basis of allergic disease.
        Annu Rev Immunol. 2003; 21: 579-628
        • Kabashima-Kubo R.
        • Nakamura M.
        • Sakabe J.
        • Sugita K.
        • Hino R.
        • Mori T.
        • et al.
        A group of atopic dermatitis without IgE elevation or barrier impairment shows a high Th1 frequency: Possible immunological state of the intrinsic type.
        J Dermatol Sci. 2012; 67: 37-43
        • Fuiano N.
        • Incorvaia C.
        Dissecting the causes of atopic dermatitis in children: less foods, more mites.
        Allergol Int. 2012; 61: 231-243
        • Tokura Y.
        Extrinsic and intrinsic types of atopic dermatitis.
        J Dermatol Sci. 2010; 58: 1-7
        • Suarez-Farinas M.
        • Dhingra N.
        • Gittler J.
        • Shemer A.
        • Cardinale I.
        • Strong C.D.
        • et al.
        Intrinsic atopic dermatitis shows similar T(H)2 and higher T(H)17 immune activation compared with extrinsic atopic dermatitis.
        J Allergy Clin Immunol. 2013; 132: 361-370
        • Boniface K.
        • Bernard F.X.
        • Garcia M.
        • Gurney A.L.
        • Lecron J.C.
        • Morel F.
        IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes.
        J Immunol. 2005; 174: 3695-3702
        • Hennino A.
        • Vocanson M.
        • Toussaint Y.
        • Rodet K.
        • Benetiere J.
        • Schmitt A.M.
        • et al.
        Skin-infiltrating CD8(+) T cells initiate atopic dermatitis lesions.
        J Immunol. 2007; 178: 5571-5577
        • Hijnen D.
        • Knol E.F.
        • Gent Y.Y.
        • Giovannone B.
        • Beijn S.J.
        • Kupper T.S.
        • et al.
        CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-gamma, IL-13, IL-17, and IL-22.
        J Invest Dermatol. 2013; 133: 973-979
        • Akdis M.
        • Simon H.U.
        • Weigl L.
        • Kreyden O.
        • Blaser K.
        • Akdis C.A.
        Skin homing (cutaneous lymphocyte-associated antigen-positive) CD8(+) T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis.
        J Immunol. 1999; 163: 466-475
        • McDonagh M.
        • Bell E.B.
        The survival and turnover of mature and immature CD8 T cells.
        Immunology. 1995; 84: 514-520
        • Weerkamp F.
        • de Haas E.F.
        • Naber B.A.
        • Comans-Bitter W.M.
        • Bogers A.J.
        • van Dongen J.J.
        • et al.
        Age-related changes in the cellular composition of the thymus in children.
        J Allergy Clin Immunol. 2005; 115: 834-840
        • Hulstaert F.
        • Hannet I.
        • Deneys V.
        • Munhyeshuli V.
        • Reichert T.
        • Debruyere M.
        • et al.
        Age-related-changes in human blood lymphocyte subpopulations .2. Varying kinetics of percentage and absolute count measurements.
        Clin Immunol Immunopathol. 1994; 70: 152-158
        • Lezzi G.
        • Karjalainen K.
        • Lanzavecchia A.
        The duration of antigenic stimulation determines the fate of naive and effector T cells.
        Immunity. 1998; 8: 89-95
        • Schade R.P.
        • Van Ieperen-Van Dijk A.G.
        • Van Reijsen F.C.
        • Versluis C.
        • Kimpen J.L.L.
        • Knol E.F.
        • et al.
        Differences in antigen-specific T-cell responses between infants with atopic dermatitis with and without cow's milk allergy: relevance of T(H)2 cytokines.
        J Allergy Clin Immunol. 2000; 106: 1155-1162
        • Higaki S.
        • Morohashi M.
        • Yamagishi T.
        • Hasegawa Y.
        Comparative study of staphylococci from the skin of atopic dermatitis patients and from healthy subjects.
        Int J Dermatol. 1999; 38: 265-269
        • Agner T.
        Staphylococcal-mediated worsening of atopic dermatitis: many players involved.
        Br J Dermatol. 2010; 163: 1147
        • Schietinger A.
        • Greenberg P.D.
        Tolerance and exhaustion: defining mechanisms of T cell dysfunction.
        Trends Immunol. 2014; 35: 51-60
        • Black A.
        • Bhaumik S.
        • Kirkman R.L.
        • Weaver C.T.
        • Randolph D.A.
        Developmental regulation of Th17-cell capacity in human neonates.
        Eur J Immunol. 2012; 42: 311-319
        • Christensen K.L.
        • Holman R.C.
        • Steiner C.A.
        • Sejvar J.J.
        • Stoll B.J.
        • Schonberger L.B.
        Infectious disease hospitalizations in the United States.
        Clin Infect Dis. 2009; 49: 1025-1035
        • Torres M.J.
        • Gonzalez F.J.
        • Corzo J.L.
        • Giron M.D.
        • Carvajal M.J.
        • Garcia V.
        • et al.
        Circulating CLA(+) lymphocytes from children with atopic dermatitis contain an increased percentage of cells bearing staphylococcal-related T-cell receptor variable segments.
        Clin Exp Allergy. 1998; 28: 1264-1272
        • Jin W.
        • Dong C.
        IL-17 cytokines in immunity and inflammation.
        Emerg Microbes Infect. 2013; 2: e60
        • Sonnenberg G.F.
        • Fouser L.A.
        • Artis D.
        Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22.
        Nat Immunol. 2011; 12: 383-390
        • Wolk K.
        • Kunz S.
        • Witte E.
        • Friedrich M.
        • Asadullah K.
        • Sabat R.
        IL-22 increases the innate immunity of tissues.
        Immunity. 2004; 21: 241-254
        • Eyerich S.
        • Eyerich K.
        • Pennino D.
        • Carbone T.
        • Nasorri F.
        • Pallotta S.
        • et al.
        Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling.
        J Clin Invest. 2009; 119: 3573-3585
        • Ishigame H.
        • Kakuta S.
        • Nagai T.
        • Kadoki M.
        • Nambu A.
        • Komiyama Y.
        • et al.
        Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses.
        Immunity. 2009; 30: 108-119
        • Liu S.Y.
        • Sanchez D.J.
        • Aliyari R.
        • Lu S.
        • Cheng G.H.
        Systematic identification of type I and type II interferon-induced antiviral factors.
        Proc Natl Acad Sci U S A. 2012; 109: 4239-4244
        • Schroder K.
        • Hertzog P.J.
        • Ravasi T.
        • Hume D.A.
        Interferon-gamma: an overview of signals, mechanisms and functions.
        J Leukoc Biol. 2004; 75: 163-189
        • Karupiah G.
        • Xie Q.W.
        • Buller R.M.
        • Nathan C.
        • Duarte C.
        • MacMicking J.D.
        Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase.
        Science. 1993; 261: 1445-1448
        • Leung D.Y.
        Atopic dermatitis: new insights and opportunities for therapeutic intervention.
        J Allergy Clin Immunol. 2000; 105: 860-876
        • Leung D.Y.M.
        • Gao P.S.
        • Grigoryev D.N.
        • Rafaels N.M.
        • Streib J.E.
        • Howell M.D.
        • et al.
        Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-γ response.
        J Allergy Clin Immunol. 2011; 127 (e1-5): 965-973
        • Ma L.
        • Xue H.B.
        • Guan X.H.
        • Shu C.M.
        • Zhang J.H.
        • Yu J.
        Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis.
        Clin Exp Immunol. 2014; 175: 25-31
        • Liu J.
        • Harberts E.
        • Tammaro A.
        • Girardi N.
        • Filler R.B.
        • Fishelevich R.
        • et al.
        IL-9 regulates allergen-specific Th1 responses in allergic contact dermatitis.
        J Invest Dermatol. 2014; 134: 1903-1911
        • Bieber T.
        Atopic dermatitis.
        Ann Dermatol. 2010; 22: 125-137
        • Burr M.L.
        • Dunstan F.D.
        • Hand S.
        • Ingram J.R.
        • Jones K.P.
        The natural history of eczema from birth to adult life: a cohort study.
        Br J Dermatol. 2013; 168: 1339-1342
        • Carlsten C.
        • Dimich-Ward H.
        • Ferguson A.
        • Watson W.
        • Rousseau R.
        • Dybuncio A.
        • et al.
        Atopic dermatitis in a high-risk cohort: natural history, associated allergic outcomes, and risk factors.
        Ann Allergy Asthma Immunol. 2013; 110: 24-28