The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling


      Barrier disruption and the resulting continuous exposure to allergens are presumed to be responsible for the development of atopic dermatitis (AD). However, the mechanism through which skin barrier function is disrupted in patients with AD remains unclear.


      Taking into account the fact that the TH2 milieu impairs keratinocyte terminal differentiation, we sought to clarify our hypothesis that the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway plays a critical role in skin barrier function and can be a therapeutic target for AD.


      We analyzed the mechanism of keratinocyte differentiation using a microarray and small interfering RNA targeting STATs. We studied the effect of the JAK inhibitor JTE-052 on keratinocyte differentiation using the human skin equivalent model and normal human epidermal keratinocytes. We applied topical JAK inhibitor onto NC/Nga mice, dry skin model mice, and human skin grafted to immunocompromised mice.


      IL-4 and IL-13 downregulated genes involved in keratinocyte differentiation. STAT3 and STAT6 are involved in keratinocyte differentiation and chemokine production by keratinocytes, respectively. Topical application of the JAK inhibitor suppressed STAT3 activation and improved skin barrier function, permitting increases in levels of terminal differentiation proteins, such as filaggrin, and natural moisturizing factors in models of AD and dry skin and in human skin.


      STAT3 signaling is a key element that regulates keratinocyte differentiation. The JAK inhibitor can be a new therapeutic tool for the treatment of disrupted barrier function in patients with AD.

      Key words

      Abbreviations used:

      AD (Atopic dermatitis), AEW (Acetone/ether/water), DMSO (Dimethyl sulfoxide), FLG (Filaggrin), GO (Gene Ontology), H&E (Hematoxylin and eosin), JAK (Janus kinase), LOR (Loricrin), NHEK (Normal human epidermal keratinocyte), NMF (Natural moisturizing factors), SC (Stratum corneum), SG (Stratum granulosum), siRNA (Small interfering RNA), SPF (Specific pathogen-free), STAT (Signal transducer and activator of transcription), TEWL (Transepidermal water loss)
      To read this article in full you will need to make a payment


        • Harding C.R.
        The stratum corneum: structure and function in health and disease.
        Dermatol Ther. 2004; 17: 6-15
        • Candi E.
        • Schmidt R.
        • Melino G.
        The cornified envelope: a model of cell death in the skin.
        Nat Rev Mol Cell Biol. 2005; 6: 328-340
        • Kabashima K.
        New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity.
        J Dermatol Sci. 2013; 70: 3-11
        • Palmer C.N.
        • Irvine A.D.
        • Terron-Kwiatkowski A.
        • Zhao Y.
        • Liao H.
        • Lee S.P.
        • et al.
        Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.
        Nat Genet. 2006; 38: 441-446
        • McAleer M.A.
        • Irvine A.D.
        The multifunctional role of filaggrin in allergic skin disease.
        J Allergy Clin Immunol. 2013; 131: 280-291
        • Gareus R.
        • Huth M.
        • Breiden B.
        • Nenci A.
        • Rosch N.
        • Haase I.
        • et al.
        Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation.
        Nat Cell Biol. 2007; 9: 461-469
        • Koch P.J.
        • de Viragh P.A.
        • Scharer E.
        • Bundman D.
        • Longley M.A.
        • Bickenbach J.
        • et al.
        Lessons from loricrin-deficient mice: compensatory mechanisms maintaining skin barrier function in the absence of a major cornified envelope protein.
        J Cell Biol. 2000; 151: 389-400
        • Kawasaki H.
        • Nagao K.
        • Kubo A.
        • Hata T.
        • Shimizu A.
        • Mizuno H.
        • et al.
        Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice.
        J Allergy Clin Immunol. 2012; 129: 1538-1546.e6
        • McGrath J.A.
        • Uitto J.
        The filaggrin story: novel insights into skin-barrier function and disease.
        Trends Mol Med. 2008; 14: 20-27
        • Moniaga C.S.
        • Kabashima K.
        Filaggrin in atopic dermatitis: flaky tail mice as a novel model for developing drug targets in atopic dermatitis.
        Inflamm Allergy Drug Targets. 2011; 10: 477-485
        • Kalinin A.E.
        • Kajava A.V.
        • Steinert P.M.
        Epithelial barrier function: assembly and structural features of the cornified cell envelope.
        Bioessays. 2002; 24: 789-800
        • Rawlings A.V.
        • Harding C.R.
        Moisturization and skin barrier function.
        Dermatol Ther. 2004; 17: 43-48
        • Thyssen J.P.
        • Kezic S.
        Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis.
        J Allergy Clin Immunol. 2014; 134: 792-799
        • van den Oord R.A.
        • Sheikh A.
        Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis.
        BMJ. 2009; 339: b2433
        • Gao P.S.
        • Rafaels N.M.
        • Hand T.
        • Murray T.
        • Boguniewicz M.
        • Hata T.
        • et al.
        Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum.
        J Allergy Clin Immunol. 2009; 124 (e1-7): 507-513
        • Brough H.A.
        • Simpson A.
        • Makinson K.
        • Hankinson J.
        • Brown S.
        • Douiri A.
        • et al.
        Peanut allergy: Effect of environmental peanut exposure in children with filaggrin loss-of-function mutations.
        J Allergy Clin Immunol. 2014; 134: 867-875.e1
        • Howell M.D.
        • Kim B.E.
        • Gao P.
        • Grant A.V.
        • Boguniewicz M.
        • Debenedetto A.
        • et al.
        Cytokine modulation of atopic dermatitis filaggrin skin expression.
        J Allergy Clin Immunol. 2007; 120: 150-155
        • Kim B.E.
        • Leung D.Y.
        • Boguniewicz M.
        • Howell M.D.
        Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6.
        Clin Immunol. 2008; 126: 332-337
        • Guttman-Yassky E.
        • Nograles K.E.
        • Krueger J.G.
        Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts.
        J Allergy Clin Immunol. 2011; 127: 1110-1118
        • Leung D.Y.
        • Guttman-Yassky E.
        Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches.
        J Allergy Clin Immunol. 2014; 134: 769-779
        • Gittler J.K.
        • Krueger J.G.
        • Guttman-Yassky E.
        Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis.
        J Allergy Clin Immunol. 2013; 131: 300-313
        • Vainchenker W.
        • Dusa A.
        • Constantinescu S.N.
        JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies.
        Semin Cell Dev Biol. 2008; 19: 385-393
        • O'Shea J.J.
        • Plenge R.
        JAK and STAT signaling molecules in immunoregulation and immune-mediated disease.
        Immunity. 2012; 36: 542-550
        • Fukushi S.
        • Yamasaki K.
        • Aiba S.
        Nuclear localization of activated STAT6 and STAT3 in epidermis of prurigo nodularis.
        Br J Dermatol. 2011; 165: 990-996
        • Tanimoto A.
        • Ogawa Y.
        • Oki C.
        • Kimoto Y.
        • Nozawa K.
        • Amano W.
        • et al.
        Pharmacological properties of JTE-052: a novel potent JAK inhibitor that suppresses various inflammatory responses in vitro and in vivo.
        Inflamm Res. 2015; 64: 41-51
        • Otsuka A.
        • Doi H.
        • Egawa G.
        • Maekawa A.
        • Fujita T.
        • Nakamizo S.
        • et al.
        Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression.
        J Allergy Clin Immunol. 2014; 133 (e1-10): 139-146
        • Miyamoto T.
        • Nojima H.
        • Shinkado T.
        • Nakahashi T.
        • Kuraishi Y.
        Itch-associated response induced by experimental dry skin in mice.
        Jpn J Pharmacol. 2002; 88: 285-292
        • Kupershmidt I.
        • Su Q.J.
        • Grewal A.
        • Sundaresh S.
        • Halperin I.
        • Flynn J.
        • et al.
        Ontology-based meta-analysis of global collections of high-throughput public data.
        PLoS One. 2010; 5: e13066
        • Nomura I.
        • Goleva E.
        • Howell M.D.
        • Hamid Q.A.
        • Ong P.Y.
        • Hall C.F.
        • et al.
        Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes.
        J Immunol. 2003; 171: 3262-3269
        • Ashburner M.
        • Ball C.A.
        • Blake J.A.
        • Botstein D.
        • Butler H.
        • Cherry J.M.
        • et al.
        Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
        Nat Genet. 2000; 25: 25-29
        • Guttman-Yassky E.
        • Suarez-Farinas M.
        • Chiricozzi A.
        • Nograles K.E.
        • Shemer A.
        • Fuentes-Duculan J.
        • et al.
        Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis.
        J Allergy Clin Immunol. 2009; 124: 1235-1244.e58
        • Sandilands A.
        • Sutherland C.
        • Irvine A.D.
        • McLean W.H.
        Filaggrin in the frontline: role in skin barrier function and disease.
        J Cell Sci. 2009; 122: 1285-1294
        • Madden K.B.
        • Whitman L.
        • Sullivan C.
        • Gause W.C.
        • Urban Jr., J.F.
        • Katona I.M.
        • et al.
        Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function.
        J Immunol. 2002; 169: 4417-4422
        • Umeshita-Suyama R.
        • Sugimoto R.
        • Akaiwa M.
        • Arima K.
        • Yu B.
        • Wada M.
        • et al.
        Characterization of IL-4 and IL-13 signals dependent on the human IL-13 receptor alpha chain 1: redundancy of requirement of tyrosine residue for STAT3 activation.
        Int Immunol. 2000; 12: 1499-1509
        • Owczarek W.
        • Paplinska M.
        • Targowski T.
        • Jahnz-Rozyk K.
        • Paluchowska E.
        • Kucharczyk A.
        • et al.
        Analysis of eotaxin 1/CCL11, eotaxin 2/CCL24 and eotaxin 3/CCL26 expression in lesional and non-lesional skin of patients with atopic dermatitis.
        Cytokine. 2010; 50: 181-185
        • Kagami S.
        • Saeki H.
        • Komine M.
        • Kakinuma T.
        • Tsunemi Y.
        • Nakamura K.
        • et al.
        Interleukin-4 and interleukin-13 enhance CCL26 production in a human keratinocyte cell line, HaCaT cells.
        Clin Exp Immunol. 2005; 141: 459-466
        • Suto H.
        • Matsuda H.
        • Mitsuishi K.
        • Hira K.
        • Uchida T.
        • Unno T.
        • et al.
        NC/Nga mice: a mouse model for atopic dermatitis.
        Int Arch Allergy Immunol. 1999; 120: 70-75
        • Proksch E.
        • Folster-Holst R.
        • Jensen J.M.
        Skin barrier function, epidermal proliferation and differentiation in eczema.
        J Dermatol Sci. 2006; 43: 159-169
        • Kezic S.
        • Kemperman P.M.
        • Koster E.S.
        • de Jongh C.M.
        • Thio H.B.
        • Campbell L.E.
        • et al.
        Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum.
        J Invest Dermatol. 2008; 128: 2117-2119
        • Elias P.M.
        • Schmuth M.
        Abnormal skin barrier in the etiopathogenesis of atopic dermatitis.
        Curr Opin Allergy Clin Immunol. 2009; 9: 437-446
        • Hardman M.J.
        • Sisi P.
        • Banbury D.N.
        • Byrne C.
        Patterned acquisition of skin barrier function during development.
        Development. 1998; 125: 1541-1552
        • Horimukai K.
        • Morita K.
        • Narita M.
        • Kondo M.
        • Kitazawa H.
        • Nozaki M.
        • et al.
        Application of moisturizer to neonates prevents development of atopic dermatitis.
        J Allergy Clin Immunol. 2014; 134: 824-830.e6
        • Simpson E.L.
        • Chalmers J.R.
        • Hanifin J.M.
        • Thomas K.S.
        • Cork M.J.
        • McLean W.H.
        • et al.
        Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention.
        J Allergy Clin Immunol. 2014; 134: 818-823
        • Ashino S.
        • Takeda K.
        • Li H.
        • Taylor V.
        • Joetham A.
        • Pine P.R.
        • et al.
        Janus kinase 1/3 signaling pathways are key initiators of TH2 differentiation and lung allergic responses.
        J Allergy Clin Immunol. 2014; 133: 1162-1174
        • Kaplan M.H.
        • Schindler U.
        • Smiley S.T.
        • Grusby M.J.
        Stat6 is required for mediating responses to IL-4 and for development of Th2 cells.
        Immunity. 1996; 4: 313-319
        • Sehra S.
        • Yao Y.
        • Howell M.D.
        • Nguyen E.T.
        • Kansas G.S.
        • Leung D.Y.
        • et al.
        IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation.
        J Immunol. 2010; 184: 3186-3190
        • Nakagawa R.
        • Yoshida H.
        • Asakawa M.
        • Tamiya T.
        • Inoue N.
        • Morita R.
        • et al.
        Pyridone 6, a pan-JAK inhibitor, ameliorates allergic skin inflammation of NC/Nga mice via suppression of Th2 and enhancement of Th17.
        J Immunol. 2011; 187: 4611-4620
        • Egawa G.
        • Kabashima K.
        Skin as a peripheral lymphoid organ: revisiting the concept of skin-associated lymphoid tissues.
        J Invest Dermatol. 2011; 131: 2178-2185
        • Akdis C.A.
        • Akdis M.
        • Bieber T.
        • Bindslev-Jensen C.
        • Boguniewicz M.
        • Eigenmann P.
        • et al.
        Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report.
        Allergy. 2006; 61: 969-987
        • Heimall J.
        • Spergel J.M.
        Filaggrin mutations and atopy: consequences for future therapeutics.
        Expert Rev Clin Immunol. 2012; 8: 189-197


        • Guttman-Yassky E.
        • Suarez-Farinas M.
        • Chiricozzi A.
        • Nograles K.E.
        • Shemer A.
        • Fuentes-Duculan J.
        • et al.
        Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis.
        J Allergy Clin Immunol. 2009; 124: 1235-1244.e58
        • Nakajima S.
        • Honda T.
        • Sakata D.
        • Egawa G.
        • Tanizaki H.
        • Otsuka A.
        • et al.
        Prostaglandin I2-IP signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity.
        J Immunol. 2010; 184: 5595-5603
        • Otsuka A.
        • Doi H.
        • Egawa G.
        • Maekawa A.
        • Fujita T.
        • Nakamizo S.
        • et al.
        Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression.
        J Allergy Clin Immunol. 2014; 133 (e1-10): 139-146
        • Suto H.
        • Matsuda H.
        • Mitsuishi K.
        • Hira K.
        • Uchida T.
        • Unno T.
        • et al.
        NC/Nga mice: a mouse model for atopic dermatitis.
        Int Arch Allergy Immunol. 1999; 120: 70-75
        • Hirai T.
        • Yoshikawa T.
        • Nabeshi H.
        • Yoshida T.
        • Tochigi S.
        • Ichihashi K.
        • et al.
        Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection.
        Part Fibre Toxicol. 2012; 9: 3