Advertisement

Peanut oral immunotherapy transiently expands circulating Ara h 2–specific B cells with a homologous repertoire in unrelated subjects

      Background

      Peanut oral immunotherapy (PNOIT) induces persistent tolerance to peanut in a subset of patients and induces specific antibodies that might play a role in clinical protection. However, the contribution of induced antibody clones to clinical tolerance in PNOIT is unknown.

      Objective

      We hypothesized that PNOIT induces a clonal, allergen-specific B-cell response that could serve as a surrogate for clinical outcomes.

      Methods

      We used a fluorescent Ara h 2 multimer for affinity selection of Ara h 2–specific B cells and subsequent single-cell immunoglobulin amplification. The diversity of related clones was evaluated by means of next-generation sequencing of immunoglobulin heavy chains from circulating memory B cells with 2x250 paired-end sequencing on the Illumina MiSeq platform.

      Results

      Expression of class-switched antibodies from Ara h 2–positive cells confirms enrichment for Ara h 2 specificity. PNOIT induces an early and transient expansion of circulating Ara h 2–specific memory B cells that peaks at week 7. Ara h 2–specific sequences from memory cells have rates of nonsilent mutations consistent with affinity maturation. The repertoire of Ara h 2–specific antibodies is oligoclonal. Next-generation sequencing–based repertoire analysis of circulating memory B cells reveals evidence for convergent selection of related sequences in 3 unrelated subjects, suggesting the presence of similar Ara h 2–specific B-cell clones.

      Conclusions

      Using a novel affinity selection approach to identify antigen-specific B cells, we demonstrate that the early PNOIT-induced Ara h 2–specific B-cell receptor repertoire is oligoclonal and somatically hypermutated and shares similar clonal groups among unrelated subjects consistent with convergent selection.

      Key words

      Abbreviations used:

      APC (Allophycocyanin), BCR (B-cell receptor), CDR (Complementarity-determining region), NGS (Next-generation sequencing), OIT (Oral immunotherapy), PNOIT (Peanut oral immunotherapy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sicherer S.H.
        • Munoz-Furlong A.
        • Burks A.W.
        • Sampson H.A.
        Prevalence of peanut and tree nut allergy in the US determined by a random digit dial telephone survey.
        J Allergy Clin Immunol. 1999; 103: 559-562
        • Sicherer S.H.
        • Munoz-Furlong A.
        • Sampson H.A.
        Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: a 5-year follow-up study.
        J Allergy Clin Immunol. 2003; 112: 1203-1207
        • Vickery B.P.
        • Scurlock A.M.
        • Kulis M.
        • Steele P.H.
        • Kamilaris J.
        • Berglund J.P.
        • et al.
        Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy.
        J Allergy Clin Immunol. 2014; 133: 468-475
        • Varshney P.
        • Jones S.M.
        • Scurlock A.M.
        • Perry T.T.
        • Kemper A.
        • Steele P.
        • et al.
        A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response.
        J Allergy Clin Immunol. 2011; 127: 654-660
        • Kim E.H.
        • Bird J.A.
        • Kulis M.
        • Laubach S.
        • Pons L.
        • Shreffler W.
        • et al.
        Sublingual immunotherapy for peanut allergy: clinical and immunologic evidence of desensitization.
        J Allergy Clin Immunol. 2011; 127: 640-646.e1
        • Thyagarajan A.
        • Jones S.M.
        • Calatroni A.
        • Pons L.
        • Kulis M.
        • Woo C.S.
        • et al.
        Evidence of pathway-specific basophil anergy induced by peanut oral immunotherapy in peanut-allergic children.
        Clin Exp Allergy. 2012; 42: 1197-1205
        • Jones S.M.
        • Pons L.
        • Roberts J.L.
        • Scurlock A.M.
        • Perry T.T.
        • Kulis M.
        • et al.
        Clinical efficacy and immune regulation with peanut oral immunotherapy.
        J Allergy Clin Immunol. 2009; 124 (e1-97): 292-300
        • Burks A.W.
        • Jones S.M.
        • Wood R.A.
        • Fleischer D.M.
        • Sicherer S.H.
        • Lindblad R.W.
        • et al.
        Oral immunotherapy for treatment of egg allergy in children.
        N Engl J Med. 2012; 367: 233-243
        • James L.K.
        • Bowen H.
        • Calvert R.A.
        • Dodev T.S.
        • Shamji M.H.
        • Beavil A.J.
        • et al.
        Allergen specificity of IgG(4)-expressing B cells in patients with grass pollen allergy undergoing immunotherapy.
        J Allergy Clin Immunol. 2012; 130: 663-670.e3
        • Shamji M.H.
        • Durham S.R.
        Mechanisms of immunotherapy to aeroallergens.
        Clin Exp Allergy. 2011; 41: 1235-1246
        • Cooke R.A.
        • Barnard J.H.
        • Hebald S.
        • Stull A.
        Serological evidence of immunity with coexisting sensitization in a type of human allergy (hay fever).
        J Exp Med. 1935; 62: 733-750
        • Shamji M.H.
        • Ljorring C.
        • Francis J.N.
        • Calderon M.A.
        • Larche M.
        • Kimber I.
        • et al.
        Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy.
        Allergy. 2012; 67: 217-226
        • Wachholz P.A.
        • Soni N.K.
        • Till S.J.
        • Durham S.R.
        Inhibition of allergen-IgE binding to B cells by IgG antibodies after grass pollen immunotherapy.
        J Allergy Clin Immunol. 2003; 112: 915-922
        • Vickery B.P.
        • Lin J.
        • Kulis M.
        • Fu Z.
        • Steele P.H.
        • Jones S.M.
        • et al.
        Peanut oral immunotherapy modifies IgE and IgG4 responses to major peanut allergens.
        J Allergy Clin Immunol. 2013; 131 (e1-3): 128-134
        • Dang T.D.
        • Tang M.
        • Choo S.
        • Licciardi P.V.
        • Koplin J.J.
        • Martin P.E.
        • et al.
        Increasing the accuracy of peanut allergy diagnosis by using Ara h 2.
        J Allergy Clin Immunol. 2012; 129: 1056-1063
        • Klemans R.J.
        • Otte D.
        • Knol M.
        • Knol E.F.
        • Meijer Y.
        • Gmelig-Meyling F.H.
        • et al.
        The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model.
        J Allergy Clin Immunol. 2013; 131: 157-163
        • Tiller T.
        • Meffre E.
        • Yurasov S.
        • Tsuiji M.
        • Nussenzweig M.C.
        • Wardemann H.
        Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning.
        J Immunol Methods. 2008; 329: 112-124
        • Wang X.
        • Stollar B.D.
        Human immunoglobulin variable region gene analysis by single cell RT-PCR.
        J Immunol Methods. 2000; 244: 217-225
        • Ogunniyi A.O.
        • Thomas B.A.
        • Politano T.J.
        • Varadarajan N.
        • Landais E.
        • Poignard P.
        • et al.
        Profiling human antibody responses by integrated single-cell analysis.
        Vaccine. 2014; 32: 2866-2873
        • Alamyar E.
        • Duroux P.
        • Lefranc M.P.
        • Giudicelli V.
        IMGT((R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS.
        Methods Mol Biol. 2012; 882: 569-604
        • Brochet X.
        • Lefranc M.P.
        • Giudicelli V.
        IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis.
        Nucleic Acids Res. 2008; 36: W503-W508
        • Giudicelli V.
        • Brochet X.
        • Lefranc M.P.
        IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences.
        Cold Spring Harb Protoc. 2011; 2011: 695-715
        • Rogosch T.
        • Kerzel S.
        • Hoi K.H.
        • Zhang Z.
        • Maier R.F.
        • Ippolito G.C.
        • et al.
        Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts.
        Front Immunol. 2012; 3: 176
        • Jiang N.
        • He J.
        • Weinstein J.A.
        • Penland L.
        • Sasaki S.
        • He X.S.
        • et al.
        Lineage structure of the human antibody repertoire in response to influenza vaccination.
        Sci Transl Med. 2013; 5: 171ra19
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760
        • Lefranc M.P.
        IMGT, the International ImMunoGeneTics Information System.
        Cold Spring Harb Protoc. 2011; 2011: 595-603
        • Lefranc M.P.
        • Giudicelli V.
        • Ginestoux C.
        • Jabado-Michaloud J.
        • Folch G.
        • Bellahcene F.
        • et al.
        IMGT, the international ImMunoGeneTics information system.
        Nucleic Acids Res. 2009; 37: D1006-D1012
        • Team RC
        R: a language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna2014
        • Wood S.N.
        Generalized additive models: an introduction with R.
        Chapman and Hall/CRC, Boca Raton (FL)2006
        • Krzywinski M.
        • Schein J.
        • Birol I.
        • Connors J.
        • Gascoyne R.
        • Horsman D.
        • et al.
        Circos: an information aesthetic for comparative genomics.
        Genome Res. 2009; 19: 1639-1645
        • van de Veen W.
        • Stanic B.
        • Yaman G.
        • Wawrzyniak M.
        • Sollner S.
        • Akdis D.G.
        • et al.
        IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses.
        J Allergy Clin Immunol. 2013; 131: 1204-1212
        • Lee J.H.
        • Noh J.
        • Noh G.
        • Kim H.S.
        • Mun S.H.
        • Choi W.S.
        • et al.
        Allergen-specific B cell subset responses in cow's milk allergy of late eczematous reactions in atopic dermatitis.
        Cell Immunol. 2010; 262: 44-51
        • Lanzavecchia A.
        Antigen uptake and accumulation in antigen-specific B cells.
        Immunol Rev. 1987; 99: 39-51
        • Newman J.
        • Rice J.S.
        • Wang C.
        • Harris S.L.
        • Diamond B.
        Identification of an antigen-specific B cell population.
        J Immunol Methods. 2003; 272: 177-187
        • Morris L.
        • Chen X.
        • Alam M.
        • Tomaras G.
        • Zhang R.
        • Marshall D.J.
        • et al.
        Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting.
        PLoS One. 2011; 6: e23532
        • Franz B.
        • May Jr., K.F.
        • Dranoff G.
        • Wucherpfennig K.
        Ex vivo characterization and isolation of rare memory B cells with antigen tetramers.
        Blood. 2011; 118: 348-357
        • Garcia-Bates T.M.
        • Cordeiro M.T.
        • Nascimento E.J.
        • Smith A.P.
        • Soares de Melo K.M.
        • McBurney S.P.
        • et al.
        Association between magnitude of the virus-specific plasmablast response and disease severity in dengue patients.
        J Immunol. 2013; 190: 80-87
        • Flinterman A.E.
        • Knol E.F.
        • Lencer D.A.
        • Bardina L.
        • den Hartog Jager C.F.
        • Lin J.
        • et al.
        Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy.
        J Allergy Clin Immunol. 2008; 121: 737-743.e10
        • Shreffler W.G.
        • Lencer D.A.
        • Bardina L.
        • Sampson H.A.
        IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2.
        J Allergy Clin Immunol. 2005; 116: 893-899
        • Frolich D.
        • Giesecke C.
        • Mei H.E.
        • Reiter K.
        • Daridon C.
        • Lipsky P.E.
        • et al.
        Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.
        J Immunol. 2010; 185: 3103-3110
        • Parameswaran P.
        • Liu Y.
        • Roskin K.M.
        • Jackson K.K.
        • Dixit V.P.
        • Lee J.Y.
        • et al.
        Convergent antibody signatures in human dengue.
        Cell Host Microbe. 2013; 13: 691-700
        • Jackson K.J.
        • Liu Y.
        • Roskin K.M.
        • Glanville J.
        • Hoh R.A.
        • Seo K.
        • et al.
        Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements.
        Cell Host Microbe. 2014; 16: 105-114
        • Wu X.
        • Zhou T.
        • Zhu J.
        • Zhang B.
        • Georgiev I.
        • Wang C.
        • et al.
        Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing.
        Science. 2011; 333: 1593-1602
        • Jiang N.
        • Weinstein J.A.
        • Penland L.
        • White 3rd, R.A.
        • Fisher D.S.
        • Quake S.R.
        Determinism and stochasticity during maturation of the zebrafish antibody repertoire.
        Proc Natl Acad Sci U S A. 2011; 108: 5348-5353
        • Glanville J.
        • Kuo T.C.
        • von Budingen H.C.
        • Guey L.
        • Berka J.
        • Sundar P.D.
        • et al.
        Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation.
        Proc Natl Acad Sci U S A. 2011; 108: 20066-20071