Intestinal barrier function: Molecular regulation and disease pathogenesis

  • Katherine R. Groschwitz
    Affiliations
    Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio

    Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
    Search for articles by this author
  • Simon P. Hogan
    Correspondence
    Reprint requests: Simon P. Hogan, PhD, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, ML7028, Cincinnati OH 45229.
    Affiliations
    Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
    Search for articles by this author
      The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mechanically link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an association between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the molecular composition and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.

      Key word

      Abbreviations used:

      AJ (Adherens junction), BBDP (BioBreeding diabetes-prone rat), CD (Crohn's disease), EPEC (Enteropathogenic Escherichia coli), HA/P (Hemagglutinin protease), HRP (Horseradish peroxidase), IBD (Inflammatory bowel disease), iIEL (Intestinal intraepithelial lymphocyte), iIL-9Tg (Intestinal IL-9 transgenic mice), JAM (Junctional adhesion molecule), MAPK (Mitogen-activated protein kinase), MLC (Myosin light chain), MLCK (Myosin light chain kinase), MUPP1 (Multi-PDZ domain protein-1), NSAID (Nonsteroidal anti-inflammatory drug), NO (Nitric oxide), PALS1 (Protein associated with Lin Seven-1), PATJ (PALS1-associated protein), PDZ (Postsynaptic density-95/Drosophila disc large/Zonula occludens-1 protein), PKC (Protein kinase C), STAT (Signal transducer and activator of transcription), TER (Transepithelial resistance), TJ (Tight junction), ZO (Zonula occludens), Zot (Zonula occludens toxin)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blikslager A.T.
        • Moeser A.J.
        • Gookin J.L.
        • Jones S.L.
        • Podle J.
        Restoration of barrier function in injured intestinal mucosa.
        Physiol Rev. 2007; 87: 545-564
        • Podolsky D.K.
        Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense.
        Am J Physiol Gastrointest Liver Physiol. 1999; 277: G495-G499
        • Kunzelmann K.
        • Mall M.
        Electrolyte transport in the mammalian colon: mechanisms and implications for disease.
        Physiol Rev. 2002; 82: 245-289
        • Broer S.
        Amino acid transport across mammalian intestinal and renal epithelia.
        Physiol Rev. 2008; 88: 249-286
        • Ferraris R.P.
        • Diamond J.
        Regulation of intestinal sugar transport.
        Physiol Rev. 1997; 77: 257-302
        • Tsukita S.
        • Furuse M.
        • Itoh M.
        Multifunctional strands in tight junctions.
        Nat Rev Mol Cell Biol. 2001; 2: 285-293
        • Van Itallie C.M.
        • Anderson J.M.
        Claudins and epithelial paracellular transport.
        Annu Rev Physiol. 2006; 68: 403-429
        • Farquher M.G.
        • Palade G.E.
        Junctional complexes in various epithelia.
        J Cell Biol. 1963; 17: 375-412
        • Schneeberger E.E.
        • Lynch R.D.
        Structure, function, and regulation of cellular tight junctions.
        Am J Physiol Lung Cell Mol Physiol. 1992; 262: L647-L661
        • Gumbiner B.
        Breaking through the tight junction barrier.
        J Cell Biol. 1993; 123: 1631-1633
        • Hartsock A.
        • Nelson W.J.
        Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.
        Biochim Biophys Acta. 2008; 1778: 660-669
        • Forster C.
        Tight junctions and the modulation of barrier function in disease.
        Histochem Cell Biol. 2008; 130: 55-70
        • Harhaj N.S.
        • Antonetti D.A.
        Regulation of tight junction and loss of barrier function in pathophysiology.
        Int J Biochem Cell Biol. 2004; 36: 1206-1237
        • Tsukita S.
        • Furuse M.
        The structure and function of claudins, cell adhesion molecules at tight junctions.
        Ann N Y Acad Sci. 2000; 915: 129-135
        • Cereijido M.
        • Contreras R.G.
        • Shoshani L.
        Cell adhesion, polarity and epithelia in the dawn of metazoans.
        Physiol Rev. 2004; 84: 1229-1262
        • Weis W.I.
        • Nelson W.J.
        Re-solving the cadherin-catenin-actin conundrum.
        J Biol Chem. 2006; 281: 35593-35597
        • Halbleib J.M.
        • Nelson W.J.
        Cadherins in development: cell adhesion, sorting, and tissue morphogenesis.
        Genes Dev. 2006; 20: 3199-3214
        • Perez-Moreno M.
        • Fuchs E.
        Catenins: keeping cells from getting their signals crossed.
        Dev Cell. 2006; 11: 601-612
        • Perez-Moreno M.
        • Jamora C.
        • Fuchs E.
        Sticky business: orchestrating cellular signals at adherens junctions.
        Cell. 2003; 112: 535-548
        • Gumbiner B.M.
        Regulation of cadherin-mediated adhesion in morphogenesis.
        Nat Rev Mol Cell Biol. 2005; 6: 622-634
        • Ebnet K.
        Organization of multiprotein complexes at cell-cell junctions.
        Histochem Cell Biol. 2008; 130: 1-20
        • Vasioukhin V.
        • Bauer C.
        • Yin M.
        • Fuchs E.
        Directed actin polymerization is the driving force for epithelial cell-cell adhesion.
        Cell. 2000; 100: 209-219
        • Vasioukhin V.
        • Bowers E.
        • Bauer C.
        • Degenstein L.
        • Fuchs E.
        Desmoplakin is essential in epidermal sheet formation.
        Nat Cell Biol. 2001; 3: 1076-1085
        • Ikeda W.
        • Nakanishi H.
        • Miyoshi J.
        • Mandai K.
        • Ishizaki H.
        • Tanaka M.
        • et al.
        Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis.
        J Cell Biol. 1999; 146: 1117-1132
        • Pokutta S.
        • Weis W.I.
        The cytoplasmic face of cell contact sites.
        Curr Opin Struct Biol. 2002; 12: 255-262
        • Pokutta S.
        • Weis W.I.
        Structure and mechanism of cadherins and catenins in cell-cell contacts.
        Annu Rev Cell Dev Biol. 2007; 23: 237-261
        • Reynolds A.B.
        • Roczniak-Ferguson A.
        Emerging roles for p120-catenin in cell adhesion and cancer.
        Oncogene. 2004; 23: 7947-7956
        • Hermiston M.L.
        • Gordon J.I.
        In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death.
        J Cell Biol. 1995; 129: 489-506
        • Herminston M.L.
        • Gordon J.I.
        Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
        Science. 1995; 270: 1203-1207
        • Miyoshi J.
        • Takai Y.
        Nectin and nectin-like molecules: biology and pathology.
        Am J Nephrol. 2007; 27: 590-604
        • Takai Y.
        • Ikeda W.
        • Ogita H.
        • Rikitake Y.
        The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin.
        Annu Rev Cell Dev Biol. 2008; 24: 309-342
        • Sakisaka T.
        • Ikeda W.
        • Ogita H.
        • Fujita N.
        • Takai Y.
        The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors.
        Curr Opin Cell Biol. 2007; 19: 593-602
        • Pokutta S.
        • Drees F.
        • Takai Y.
        • Nelson W.J.
        • Weis W.I.
        Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin.
        J Biol Chem. 2002; 277: 18868-18874
        • Tachibana K.
        • Nakanishi H.
        • Mandai K.
        • Ozaki K.
        • Ikeda W.
        • Yamamoto Y.
        • et al.
        Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins.
        J Cell Biol. 2000; 150: 1161-1176
        • Mandai K.
        • Nakanishi H.
        • Satoh A.
        • Takahashi K.
        • Satoh K.
        • Nishioka H.
        • et al.
        Ponsin/SH3P12: an l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions.
        J Cell Biol. 1999; 144: 1001-1017
        • Asada M.
        • Irie K.
        • Morimoto K.
        • Yamada A.
        • Ikeda W.
        • Takeuchi M.
        • et al.
        ADIP, a novel Afadin- and alpha-actinin-binding protein localized at cell-cell adherens junctions.
        J Biol Chem. 2003; 278: 4103-4111
        • Ooshio T.
        • Irie K.
        • Morimoto K.
        • Fukuhara A.
        • Imai T.
        • Takai Y.
        Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells.
        J Biol Chem. 2004; 279: 31365-31373
        • Gonzalez-Mariscal L.
        • Betanzos A.
        • Nava P.
        • Jaramillo B.E.
        Tight junction proteins.
        Prog Biophys Mol Biol. 2003; 81: 1-44
        • Staehelin L.A.
        Further observations on the fine structure of freeze-cleaved tight junctions.
        J Cell Sci. 1973; 13: 763-786
        • Matter K.
        • Balda M.S.
        Epithelial tight junctions, gene expression and nucleojunctional interplay.
        J Cell Sci. 2007; 120: 1505-1511
        • Laukoetter M.G.
        • Bruewer M.
        • Nusrat A.
        Regulation of the intestinal epithelial barrier by the apical junctional complex.
        Curr Opin Gastroenterol. 2006; 22: 85-89
        • Saitou M.
        • Fujimoto K.
        • Doi Y.
        • Itoh M.
        • Fujimoto T.
        • Furuse M.
        • et al.
        Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions.
        J Cell Biol. 1998; 141: 397-408
        • Schulzke J.D.
        • Gitter A.H.
        • Mankertz J.
        • Spiegel S.
        • Seidler U.
        • Amasheh S.
        • et al.
        Epithelial transport and barrier function in occludin-deficient mice.
        Biochim Biophys Acta. 2005; 1669: 34-42
        • Furuse M.
        • Hata M.
        • Furuse K.
        • Yoshida Y.
        • Haratake A.
        • Sugitani Y.
        • et al.
        Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice.
        J Cell Biol. 2002; 156: 1099-1111
        • Turksen K.
        • Troy T.C.
        Permeability barrier dysfunction in transgenic mice overexpressing claudin 6.
        Development. 2002; 129: 1775-1784
        • Laukoetter M.G.
        • Nava P.
        • Lee W.Y.
        • Severson E.A.
        • Capaldo C.T.
        • Babbin B.A.
        • et al.
        JAM-A regulates permeability and inflammation in the intestine in vivo.
        J Exp Med. 2007; 204: 3067-3076
        • Madden K.B.
        • Whitman L.
        • Sullivan C.
        • Gause W.C.
        • Urban Jr., J.F.
        • Katona I.M.
        • et al.
        Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function.
        J Immunol. 2002; 169: 4417-4422
        • Madsen K.L.
        • Malfair D.
        • Gray D.
        • Doyle J.S.
        • Jewell L.D.
        • Fedorak R.N.
        Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora.
        Inflamm Bowel Dis. 1999; 5: 262-270
        • Arrieta M.C.
        • Madsen K.
        • Doyle J.
        • Meddings J.
        Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse.
        Gut. 2009; 58: 41-48
        • Kuhn R.
        • Lohler J.
        • Rennick D.
        • Rajewsky K.
        • Muller W.
        Interleukin-10-deficient mice develop chronic enterocolitis.
        Cell. 1993; 75: 263-274
        • McDermott J.R.
        • Bartram R.E.
        • Knight P.A.
        • Miller H.R.
        • Garrod D.R.
        • Grencis R.K.
        Mast cells disrupt epithelial barrier function during enteric nematode infection.
        Proc Natl Acad Sci U S A. 2003; 100: 7761-7766
        • Forbes E.E.
        • Groschwitz K.
        • Abonia J.P.
        • Brandt E.B.
        • Cohen E.
        • Blanchard C.
        • et al.
        IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity.
        J Exp Med. 2008; 205: 897-913
        • Su L.
        • Shen L.
        • Clayburgh D.R.
        • Nalle S.C.
        • Sullivan E.A.
        • Meddings J.B.
        • et al.
        Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis.
        Gastroenterology. 2009; 136: 551-563
        • Atkinson K.J.
        • Rao R.K.
        Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G1280-G1288
        • Seth A.
        • Basuroy S.
        • Sheth P.
        • Rao R.K.
        L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer.
        Am J Physiol Gastrointest Liver Physiol. 2004; 287: G510-G517
        • Furuse M.
        • Hirase T.
        • Itoh M.
        • Nagafuchi A.
        • Yonemura S.
        • Tsukita S.
        • et al.
        Occludin: a novel integral membrane protein localizing at tight junctions.
        J Cell Biol. 1993; 123: 1777-1788
        • Bauer H.
        • Stelzhammer W.
        • Fuchs R.
        • Weiger T.M.
        • Danninger C.
        • Probst G.
        • et al.
        Astrocytes and neurons express the tight junction-specific protein occludin in vitro.
        Exp Cell Res. 1999; 250: 434-438
        • Barber A.J.
        • Antonetti D.A.
        • Gardner T.W.
        Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group.
        Invest Ophthalmol Vis Sci. 2000; 41: 3561-3568
        • Rescigno M.
        • Urbano M.
        • Valzasina B.
        • Francolini M.
        • Rotta G.
        • Bonasio R.
        • et al.
        Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
        Nat Immunol. 2001; 2: 361-367
        • Furuse M.
        • Itoh M.
        • Hirase T.
        • Nagafuchi A.
        • Yonemura S.
        • Tsukita S.
        • et al.
        Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions.
        J Cell Biol. 1994; 127: 1617-1626
        • Mitic L.L.
        • Van Itallie C.M.
        • Anderson J.M.
        Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins.
        Am J Physiol Gastrointest Liver Physiol. 2000; 279: G250-G254
        • Muresan Z.
        • Paul D.L.
        • Goodenough D.A.
        Occludin 1B, a variant of the tight junction protein occludin.
        Mol Biol Cell. 2000; 11: 627-634
        • Mankertz J.
        • Waller J.S.
        • Hillenbrand B.
        • Tavalali S.
        • Florian P.
        • Schoneberg T.
        • et al.
        Gene expression of the tight junction protein occludin includes differential splicing and alternative promoter usage.
        Biochem Biophys Res Commun. 2002; 298: 657-666
        • Balda M.S.
        • Whitney J.A.
        • Flores C.
        • Gonzalez S.
        • Cereijido M.
        • Matter K.
        Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein.
        J Cell Biol. 1996; 134: 1031-1049
        • McCarthy K.M.
        • Skare I.B.
        • Stankewich M.C.
        • Furuse M.
        • Tsukita S.
        • Rogers R.A.
        • et al.
        Occludin is a functional component of the tight junction.
        J Cell Sci. 1996; 109: 2287-2298
        • Wan H.
        • Winton H.L.
        • Soeller C.
        • Tovey E.R.
        • Gruenert D.C.
        • Thompson P.J.
        • et al.
        Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions.
        J Clin Invest. 1999; 104: 123-133
        • Antonetti D.A.
        • Wolpert E.B.
        • DeMaio L.
        • Harhaj N.S.
        • Scaduto Jr., R.C.
        Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin.
        J Neurochem. 2002; 80: 667-677
        • Furuse M.
        • Fujimoto K.
        • Sato N.
        • Hirase T.
        • Tsukita S.
        • Tsukita S.
        Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures.
        J Cell Sci. 1996; 109: 429-435
        • Van Itallie C.M.
        • Anderson J.M.
        Occludin confers adhesiveness when expressed in fibroblasts.
        J Cell Sci. 1997; 110: 1113-1121
        • Chen M.L.
        • Pothoulakis C.
        • LaMont J.T.
        Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A.
        J Biol Chem. 2002; 277: 4247-4254
        • Nunbhakdi-Craig V.
        • Machleidt T.
        • Ogris E.
        • Bellotto D.
        • White 3rd, C.L.
        • Sontag E.
        Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex.
        J Cell Biol. 2002; 158: 967-978
        • Suzuki T.
        • Elias B.C.
        • Seth A.
        • Shen L.
        • Turner J.R.
        • Giorgianni F.
        • et al.
        PKC eta regulates occludin phosphorylation and epithelial tight junction integrity.
        Proc Natl Acad Sci U S A. 2009; 106: 61-66
        • Harhaj N.S.
        • Antonetti D.A.
        Regulation of tight junctions and loss of barrier function in pathophysiology.
        Int J Biochem Cell Biol. 2004; 36: 1206-1237
        • Schneeberger E.E.
        • Lynch R.D.
        The tight junction: a multifunctional complex.
        Am J Physiol Cell Physiol. 2004; 286: C1213-C1228
        • Turksen K.
        • Troy T.C.
        Barriers built on claudins.
        J Cell Sci. 2004; 117: 2435-2447
        • Morita K.
        • Furuse M.
        • Fujimoto K.
        • Tsukita S.
        Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands.
        Proc Natl Acad Sci U S A. 1999; 96: 511-516
        • Itoh M.
        • Furuse M.
        • Morita K.
        • Kubota K.
        • Saitou M.
        • Tsukita S.
        Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.
        J Cell Biol. 1999; 147: 1351-1363
        • McCarthy K.M.
        • Francis S.A.
        • McCormack J.M.
        • Lai J.
        • Rogers R.A.
        • Skare I.B.
        • et al.
        Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells.
        J Cell Sci. 2000; 113: 3387-3398
        • Furuse M.
        • Fujita K.
        • Hiiragi T.
        • Fujimoto K.
        • Tsukita S.
        Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.
        J Cell Biol. 1998; 141: 1539-1550
        • Ebnet K.
        • Suzuki A.
        • Ohno S.
        • Vestweber D.
        Junctional adhesion molecules (JAMs): more molecules with dual functions?.
        J Cell Sci. 2004; 117: 19-29
        • Bazzoni G.
        The JAM family of junctional adhesion molecules.
        Curr Opin Cell Biol. 2003; 15: 525-530
        • Williams L.A.
        • Martin-Padura I.
        • Dejana E.
        • Hogg N.
        • Simmons D.L.
        Identification and characterisation of human junctional adhesion molecule (JAM).
        Mol Immunol. 1999; 36: 1175-1188
        • Liu Y.
        • Nusrat A.
        • Schnell F.J.
        • Reaves T.A.
        • Walsh S.
        • Pochet M.
        • et al.
        Human junction adhesion molecule regulates tight junction resealing in epithelia.
        J Cell Sci. 2000; 113: 2363-2374
        • Bazzoni G.
        • Martinez-Estrada O.M.
        • Mueller F.
        • Nelboeck P.
        • Schmid G.
        • Bartfai T.
        • et al.
        Homophilic interaction of junctional adhesion molecule.
        J Biol Chem. 2000; 275: 30970-30976
        • Babinska A.
        • Kedees M.H.
        • Athar H.
        • Sobocki T.
        • Sobocka M.B.
        • Ahmed T.
        • et al.
        Two regions of the human platelet F11-receptor (F11R) are critical for platelet aggregation, potentiation and adhesion.
        Thromb Haemost. 2002; 87: 712-721
        • Krause G.
        • Winkler L.
        • Mueller S.L.
        • Haseloff R.F.
        • Piontek J.
        • Blasig I.E.
        Structure and function of claudins.
        Biochim Biophys Acta. 2008; 1778: 631-645
        • Furuse M.
        • Sasaki H.
        • Tsukita S.
        Manner of interaction of heterogeneous claudin species within and between tight junction strands.
        J Cell Biol. 1999; 147: 891-903
        • Furuse M.
        • Furuse K.
        • Sasaki H.
        • Tsukita S.
        Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells.
        J Cell Biol. 2001; 153: 263-272
        • Yu A.S.
        • Enck A.H.
        • Lencer W.I.
        • Schneeberger E.E.
        Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation.
        J Biol Chem. 2003; 278: 17350-17359
        • Colegio O.R.
        • Van Itallie C.
        • Rahner C.
        • Anderson J.M.
        Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture.
        Am J Physiol Cell Physiol. 2003; 284: C1346-C1354
        • Colegio O.R.
        • Van Itallie C.M.
        • McCrea H.J.
        • Rahner C.
        • Anderson J.M.
        Claudins create charge-selective channels in the paracellular pathway between epithelial cells.
        Am J Physiol Cell Physiol. 2002; 283: C142-C147
        • Van Itallie C.M.
        • Holmes J.
        • Bridges A.
        • Gookin J.L.
        • Coccaro M.R.
        • Proctor W.
        • et al.
        The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.
        J Cell Sci. 2008; 121: 298-305
        • Agarwal R.
        • D'Souza T.
        • Morin P.J.
        Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity.
        Cancer Res. 2005; 65: 7378-7385
        • D'Souza T.
        • Agarwal R.
        • Morin P.J.
        Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells.
        J Biol Chem. 2005; 280: 26233-26240
        • D'Souza T.
        • Indig F.E.
        • Morin P.J.
        Phosphorylation of claudin-4 by PKCepsilon regulates tight junction barrier function in ovarian cancer cells.
        Exp Cell Res. 2007; 313: 3364-3375
        • Yamauchi K.
        • Rai T.
        • Kobayashi K.
        • Sohara E.
        • Suzuki T.
        • Itoh T.
        • et al.
        Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins.
        Proc Natl Acad Sci U S A. 2004; 101: 4690-4694
        • Gonzalez-Mariscal L.
        • Tapia R.
        • Chamorro D.
        Crosstalk of tight junction components with signaling pathways.
        Biochim Biophys Acta. 2008; 1778: 729-756
        • Fujibe M.
        • Chiba H.
        • Kojima T.
        • Soma T.
        • Wada T.
        • Yamashita T.
        • et al.
        Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions.
        Exp Cell Res. 2004; 295: 36-47
        • Roh M.H.
        • Liu C.J.
        • Laurinec S.
        • Margolis B.
        The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions.
        J Biol Chem. 2002; 277: 27501-27509
        • Aijaz S.
        • Balda M.S.
        • Matter K.
        Tight junctions: molecular architecture and function.
        Int Rev Cytol. 2006; 248: 261-298
        • Macara I.G.
        Parsing the polarity code.
        Nat Rev Mol Cell Biol. 2004; 5: 220-231
        • Van Itallie C.M.
        • Rogan S.
        • Yu A.
        • Vidal L.S.
        • Holmes J.
        • Anderson J.M.
        Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities.
        Am J Physiol Renal Physiol. 2006; 291: F1288-F1299
        • Meddings J.B.
        • Jarand J.
        • Urbanski S.J.
        • Hardin J.
        • Gall D.G.
        Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat.
        Am J Physiol Gastrointest Liver Physiol. 1999; 276: G951-G957
        • MacDonald T.T.
        • Hutchings P.
        • Choy M.Y.
        • Murch S.
        • Cooke A.
        Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine.
        Clin Exp Immunol. 1990; 81: 301-305
        • Fais S.
        • Capobianchi M.R.
        • Silvestri M.
        • Mercuri F.
        • Pallone F.
        • Dianzani F.
        Interferon expression in Crohn's disease patients: increased interferon-gamma and -alpha mRNA in the intestinal lamina propria mononuclear cells.
        J Interferon Res. 1994; 14: 235-238
        • Ye D.
        • Ma I.
        • Ma T.Y.
        Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier.
        Am J Physiol Gastrointest Liver Physiol. 2006; 290: G496-G504
        • Zolotarevsky Y.
        • Hecht G.
        • Koutsouris A.
        • Gonzalez D.E.
        • Quan C.
        • Tom J.
        • et al.
        A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease.
        Gastroenterology. 2002; 123: 163-172
        • Mankertz J.
        • Tavalali S.
        • Schmitz H.
        • Mankertz A.
        • Riecken E.O.
        • Fromm M.
        • et al.
        Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma.
        J Cell Sci. 2000; 113: 2085-2090
        • Zund G.
        • Madara J.L.
        • Dzus A.L.
        • Awtrey C.S.
        • Colgan S.P.
        Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion.
        J Biol Chem. 1996; 271: 7460-7464
        • Ceponis P.J.
        • Botelho F.
        • Richards C.D.
        • McKay D.M.
        Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement.
        J Biol Chem. 2000; 275: 29132-29137
        • Berin M.C.
        • Yang P.C.
        • Ciok L.
        • Waserman S.
        • Perdue M.H.
        Role for IL-4 in macromolecular transport across human intestinal epithelium.
        Am J Physiol Cell Physiol. 1999; 276: C1046-C1052
        • Prasad S.
        • Mingrino R.
        • Kaukinen K.
        • Hayes K.L.
        • Powell R.M.
        • MacDonald T.T.
        • et al.
        Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells.
        Lab Invest. 2005; 85: 1139-1162
        • Madsen K.L.
        • Tavernini M.M.
        • Mosmann T.R.
        • Fedorak R.N.
        Interleukin 10 modulates ion transport in rat small intestine.
        Gastroenterology. 1996; 111: 936-944
        • Madsen K.L.
        • Lewis S.A.
        • Tavernini M.M.
        • Hibbard J.
        • Fedorak R.N.
        Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion.
        Gastroenterology. 1997; 113: 151-159
        • Fasano A.
        • Shea-Donohue T.
        Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal diseases.
        Nat Clin Pract Gastroenterol Hepatol. 2005; 2: 416-422
        • Musch M.W.
        • Clarke L.L.
        • Mamah D.
        • Gawenis L.R.
        • Zhang Z.
        • Ellsworth W.
        • et al.
        T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase.
        J Clin Invest. 2002; 110: 1739-1747
        • Clayburgh D.R.
        • Barrett T.A.
        • Tang Y.
        • Meddings J.B.
        • Van Eldik L.J.
        • Watterson D.M.
        • et al.
        Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo.
        J Clin Invest. 2005; 115: 2702-2715
        • Clayburgh D.R.
        • Musch M.W.
        • Leitges M.
        • Fu Y.X.
        • Turner J.R.
        Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo.
        J Clin Invest. 2006; 116: 2682-2694
        • Dalton J.E.
        • Cruickshank S.M.
        • Egan C.E.
        • Mears R.
        • Newton D.J.
        • Andrew E.M.
        • et al.
        Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection.
        Gastroenterology. 2006; 131: 818-829
        • Yu L.C.
        • Perdue M.H.
        Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress.
        Immunol Rev. 2001; 179: 61-73
        • Galli S.J.
        • Grimbaldeston M.
        • Tsai M.
        Immunomodulatory mast cells: negative, as well as positive, regulators of immunity.
        Nat Rev Immunol. 2008; 8: 478-486
        • Bischoff S.C.
        • Kramer S.
        Human mast cells, bacteria, and intestinal immunity.
        Immunol Rev. 2007; 217: 329-337
        • Bischoff S.C.
        Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data.
        Nat Rev Immunol. 2007; 7: 93-104
        • Pennock J.L.
        • Grencis R.K.
        The mast cell and gut nematodes: damage and defence.
        Chem Immunol Allergy. 2006; 90: 128-140
        • Crowe S.E.
        • Soda K.
        • Stanisz A.M.
        • Perdue M.H.
        Intestinal permeability in allergic rats: nerve involvement in antigen-induced changes.
        Am J Physiol Gastrointest Liver Physiol. 1993; 264: G617-G6123
        • Perdue M.H.
        • Masson S.
        • Wershil B.K.
        • Galli S.J.
        Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation.
        J Clin Invest. 1991; 87: 687-693
        • Berin M.C.
        • Kiliaan A.J.
        • Yang P.C.
        • Groot J.A.
        • Taminiau J.A.
        • Perdue M.H.
        Rapid transepithelial antigen transport in rat jejunum: impact of sensitization and the hypersensitivity reaction.
        Gastroenterology. 1997; 113: 856-864
        • Crowe S.E.
        • Sestini P.
        • Perdue M.H.
        Allergic reactions of rat jejunal mucosa. Ion transport responses to luminal antigen and inflammatory mediators.
        Gastroenterology. 1990; 99: 74-82
        • Jeziorska M.
        • Haboubi N.
        • Schofield P.
        • Woolley D.E.
        Distribution and activation of eosinophils in inflammatory bowel disease using an improved immunohistochemical technique.
        J Pathol. 2001; 194: 484-492
        • Levy A.M.
        • Gleich G.J.
        • Sandborn W.J.
        • Tremaine W.J.
        • Steiner B.L.
        • Phillips S.F.
        Increased eosinophil granule proteins in gut lavage fluid from patients with inflammatory bowel disease.
        Mayo Clin Proc. 1997; 72: 117-123
        • Carvalho A.T.
        • Elia C.C.
        • de Souza H.S.
        • Elias P.R.
        • Pontes E.L.
        • Lukashok H.P.
        • et al.
        Immunohistochemical study of intestinal eosinophils in inflammatory bowel disease.
        J Clin Gastroenterol. 2003; 36: 120-125
        • Laukoetter M.G.
        • Nava P.
        • Nusrat A.
        Role of the intestinal barrier in inflammatory bowel disease.
        World J Gastroenterol. 2008; 14: 401-407
        • Furuta G.T.
        • Nieuwenhuis E.E.
        • Karhausen J.
        • Gleich G.
        • Blumberg R.S.
        • Lee J.J.
        • et al.
        Eosinophils alter colonic epithelial barrier function: role for major basic protein.
        Am J Physiol Gastrointest Liver Physiol. 2005; 289: G890-G897
        • Bode J.C.
        Alcohol and the gastrointestinal tract.
        Ergeb Inn Med Kinderheilkd. 1980; 45: 1-75
        • Beck I.T.
        • Dinda P.K.
        Acute exposure of small intestine to ethanol: effects on morphology and function.
        Dig Dis Sci. 1981; 26: 817-838
        • Ferrier L.
        • Berard F.
        • Debrauwer L.
        • Chabo C.
        • Langella P.
        • Bueno L.
        • et al.
        Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents.
        Am J Pathol. 2006; 168: 1148-1154
        • Banan A.
        • Fields J.Z.
        • Decker H.
        • Zhang Y.
        • Keshavarzian A.
        Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction.
        J Pharmacol Exp Ther. 2000; 294: 997-1008
        • Lambert J.C.
        • Zhou Z.
        • Wang L.
        • Song Z.
        • McClain C.J.
        • Kang Y.J.
        Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice.
        J Pharmacol Exp Ther. 2003; 305: 880-886
        • Barona E.
        • Pirola R.C.
        • Leiber C.S.
        Small intestinal damage and changes in cell population produced by ethanol ingestion in the rat.
        Gastroenterology. 1974; 66: 226-234
        • Shibayama Y.
        • Asaka S.
        • Nakata K.
        Endotoxin hepatotoxicity augmented by ethanol.
        Exp Mol Pathol. 1991; 55: 196-202
        • Tamai H.
        • Horie Y.
        • Kato S.
        • Yokoyama H.
        • Ishii H.
        Long-term ethanol feeding enhances susceptibility of the liver to orally administered lipopolysaccharides in rats.
        Alcohol Clin Exp Res. 2002; 26: 75S-80S
        • Gottfried E.B.
        • Korsten M.A.
        • Lieber C.S.
        Alcohol-induced gastric and duodenal lesions in man.
        Am J Gastroenterol. 1978; 70: 587-592
        • Parlesak A.
        • Schafer C.
        • Schutz T.
        • Bode J.C.
        • Bode C.
        Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease.
        J Hepatol. 2000; 32: 742-747
        • Dinda P.K.
        • Leddin D.J.
        • Beck I.T.
        Histamine is involved in ethanol-induced jejunal microvascular injury in rabbits.
        Gastroenterology. 1988; 95: 1227-1233
        • Dinda P.K.
        • Kossev P.
        • Beck I.T.
        • Buell M.G.
        Role of xanthine oxidase-derived oxidants and leukocytes in ethanol-induced jejunal mucosal injury.
        Dig Dis Sci. 1996; 41: 2461-2470
        • Robert A.
        An intestinal disease produced experimentally by a prostaglandin deficiency.
        Gastroenterology. 1975; 69: 1045-1047
        • Whittle B.J.
        Temporal relationship between cyclooxygenase inhibition, as measured by prostacyclin biosynthesis, and the gastrointestinal damage induced by indomethacin in the rat.
        Gastroenterology. 1981; 80: 94-98
        • Bjarnason I.
        • Zanelli G.
        • Smith T.
        • Prouse P.
        • Williams P.
        • Smethurst P.
        • et al.
        Nonsteroidal antiinflammatory drug-induced intestinal inflammation in humans.
        Gastroenterology. 1987; 93: 480-489
        • Kaufmann H.J.
        • Taubin H.L.
        Nonsteroidal anti-inflammatory drugs activate quiescent inflammatory bowel disease.
        Ann Intern Med. 1987; 107: 513-516
        • Fries J.F.
        • Miller S.R.
        • Spitz P.W.
        • Williams C.A.
        • Hubert H.B.
        • Bloch D.A.
        Toward an epidemiology of gastropathy associated with nonsteroidal antiinflammatory drug use.
        Gastroenterology. 1989; 96: 647-655
        • Lanas A.
        • Sekar M.C.
        • Hirschowitz B.I.
        Objective evidence of aspirin use in both ulcer and nonulcer upper and lower gastrointestinal bleeding.
        Gastroenterology. 1992; 103: 862-869
        • Langman M.J.
        • Weil J.
        • Wainwright P.
        • Lawson D.H.
        • Rawlins M.D.
        • Logan R.F.
        • et al.
        Risks of bleeding peptic ulcer associated with individual non-steroidal anti-inflammatory drugs.
        Lancet. 1994; 343: 1075-1078
        • Lanas A.
        • Serrano P.
        • Bajador E.
        • Esteva F.
        • Benito R.
        • Sainz R.
        Evidence of aspirin use in both upper and lower gastrointestinal perforation.
        Gastroenterology. 1997; 112: 683-689
        • Sigthorsson G.
        • Jacob M.
        • Wrigglesworth J.
        • Somasundaram S.
        • Tavares I.
        • Foster R.
        • et al.
        Comparison of indomethacin and nimesulide, a selective cyclooxygenase-2 inhibitor, on key pathophysiologic steps in the pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in the rat.
        Scand J Gastroenterol. 1998; 33: 728-735
        • Sigthorsson G.
        • Tibble J.
        • Hayllar J.
        • Menzies I.
        • Macpherson A.
        • Moots R.
        • et al.
        Intestinal permeability and inflammation in patients on NSAIDs.
        Gut. 1998; 43: 506-511
        • Oshima T.
        • Miwa H.
        • Joh T.
        Aspirin induces gastric epithelial barrier dysfunction by activating p38 MAPK via claudin-7.
        Am J Physiol Cell Physiol. 2008; 295: C800-C806
        • Meyer R.A.
        • McGinley D.
        • Posalaky Z.
        The effects of 16,16-dimethyl prostaglandin E2 + aspirin on the canine gastric mucosal barrier.
        Virchows Arch A Pathol Anat Histopathol. 1987; 412: 119-125
        • Wallace J.L.
        • Keenan C.M.
        • Granger D.N.
        Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process.
        Am J Physiol Gatrointest Liver Physiol. 1990; 259: G462-G467
        • Takeuchi K.
        • Ueshima K.
        • Hironaka Y.
        • Fujioka Y.
        • Matsumoto J.
        • Okabe S.
        Oxygen free radicals and lipid peroxidation in the pathogenesis of gastric mucosal lesions induced by indomethacin in rats. Relation to gastric hypermotility.
        Digestion. 1991; 49: 175-184
        • Tanaka A.
        • Kunikata T.
        • Mizoguchi H.
        • Kato S.
        • Takeuchi K.
        Dual action of nitric oxide in pathogenesis of indomethacin-induced small intestinal ulceration in rats.
        J Physiol Pharmacol. 1999; 50: 405-417
        • Somasundaram S.
        • Sigthorsson G.
        • Simpson R.J.
        • Watts J.
        • Jacob M.
        • Tavares I.A.
        • et al.
        Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat.
        Aliment Pharmacol Ther. 2000; 14: 639-650
        • Berkes J.
        • Viswanathan V.K.
        • Savkovic S.D.
        • Hecht G.
        Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation.
        Gut. 2003; 52: 439-451
        • Wu Z.
        • Milton D.
        • Nybom P.
        • Sjo A.
        • Magnusson K.E.
        Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultured epithelial cells and perturbs their paracellular barrier function.
        Microb Pathog. 1996; 21: 111-123
        • Mel S.F.
        • Fullner K.J.
        • Wimer-Mackin S.
        • Lencer W.I.
        • Mekalanos J.J.
        Association of protease activity in Vibrio cholerae vaccine strains with decreases in transcellular epithelial resistance of polarized T84 intestinal epithelial cells.
        Infect Immun. 2000; 68: 6487-6492
        • Wu Z.
        • Nybom P.
        • Magnusson K.E.
        Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1.
        Cell Microbiol. 2000; 2: 11-17
        • Fasano A.
        • Baudry B.
        • Pumplin D.W.
        • Wasserman S.S.
        • Tall B.D.
        • Ketley J.M.
        • et al.
        Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions.
        Proc Natl Acad Sci U S A. 1991; 88: 5242-5246
        • Fasano A.
        • Fiorentini C.
        • Donelli G.
        • Uzzau S.
        • Kaper J.B.
        • Margaretten K.
        • et al.
        Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro.
        J Clin Invest. 1995; 96: 710-720
        • Schmidt E.
        • Kelly S.M.
        • van der Walle C.F.
        Tight junction modulation and biochemical characterisation of the zonula occludens toxin C- and N-termini.
        FEBS Lett. 2007; 581: 2974-2980
        • Fasano A.
        • Uzzau S.
        • Fiore C.
        • Margaretten K.
        The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway.
        Gastroenterology. 1997; 112: 839-846
        • Wang W.
        • Uzzau S.
        • Goldblum S.E.
        • Fasano A.
        Human zonulin, a potential modulator of intestinal tight junctions.
        J Cell Sci. 2000; 113: 4435-4440
        • Knutton S.
        • Lloyd D.R.
        • McNeish A.S.
        Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa.
        Infect Immun. 1987; 55: 69-77
        • Jarvis K.G.
        • Giron J.A.
        • Jerse A.E.
        • McDaniel T.K.
        • Donnenberg M.S.
        • Kaper J.B.
        Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation.
        Proc Natl Acad Sci U S A. 1995; 92: 7996-8000
        • Spitz J.
        • Yuhan R.
        • Koutsouris A.
        • Blatt C.
        • Alverdy J.
        • Hecht G.
        Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function.
        Am J Physiol Gastrointest Liver Physiol. 1995; 268: G374-G379
        • Muza-Moons M.M.
        • Schneeberger E.E.
        • Hecht G.A.
        Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells.
        Cell Microbiol. 2004; 6: 783-793
        • Philpott D.J.
        • McKay D.M.
        • Sherman P.M.
        • Perdue M.H.
        Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions.
        Am J Physiol Gastrointest Liver Physiol. 1996; 270: G634-G645
        • Yuhan R.
        • Koutsouris A.
        • Savkovic S.D.
        • Hecht G.
        Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability.
        Gastroenterology. 1997; 113: 1873-1882
        • Fujita K.
        • Katahira J.
        • Horiguchi Y.
        • Sonoda N.
        • Furuse M.
        • Tsukita S.
        Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein.
        FEBS Lett. 2000; 476: 258-261
        • Katahira J.
        • Sugiyama H.
        • Inoue N.
        • Horiguchi Y.
        • Matsuda M.
        • Sugimoto N.
        Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo.
        J Biol Chem. 1997; 272: 26652-26658
        • Singh U.
        • Mitic L.L.
        • Wieckowski E.U.
        • Anderson J.M.
        • McClane B.A.
        Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells.
        J Biol Chem. 2001; 276: 33402-33412
        • Singh U.
        • Van Itallie C.M.
        • Mitic L.L.
        • Anderson J.M.
        • McClane B.A.
        CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin.
        J Biol Chem. 2000; 275: 18407-18417
        • Sonoda N.
        • Furuse M.
        • Sasaki H.
        • Yonemura S.
        • Katahira J.
        • Horiguchi Y.
        • et al.
        Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier.
        J Cell Biol. 1999; 147: 195-204
        • Chakrabarti G.
        • McClane B.A.
        The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin.
        Cell Microbiol. 2005; 7: 129-146
        • Chakrabarti G.
        • Zhou X.
        • McClane B.A.
        Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin.
        Infect Immun. 2003; 71: 4260-4270
        • Meddings J.
        The significance of the gut barrier in disease.
        Gut. 2008; 57: 438-440
        • Buhner S.
        • Buning C.
        • Genschel J.
        • Kling K.
        • Herrmann D.
        • Dignass A.
        • et al.
        Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?.
        Gut. 2006; 55: 342-347
        • Takeuchi K.
        • Maiden L.
        • Bjarnason I.
        Genetic aspects of intestinal permeability in inflammatory bowel disease.
        in: Chadwick D. Goode J. Inflammatory bowel disease-crossroads of microbes, epithelium and immune systems. Wiley, Chichester2004: 151-163
        • Mankertz J.
        • Schulzke J.
        Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications.
        Curr Opin Gastroenterol. 2007; 23: 379-383
        • Heyman M.
        • Desjeux J.F.
        Cytokine-induced alteration of the epithelial barrier to food antigens in disease.
        Ann N Y Acad Sci. 2003; 202: 304-311
        • Heymann M.
        Gut barrier dysfunction in food allergy.
        Eur J Gastroenterol Hepatol. 2005; 17: 1279-1285
        • Andre C.
        • Andre F.
        • Colin L.
        • Cavagna S.
        Measurement of intestinal permeability to mannitol and lactulose as a means of diagnosing food allergy and evaluating therapeutic effectiveness of disodium cromoglycate.
        Ann Allergy. 1987; 59: 127-130
        • Baert F.J.
        • D'Haens G.R.
        • Peeters M.
        • Hiele M.I.
        • Schaible T.F.
        • Shealy D.
        • et al.
        Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis.
        Gastroenterology. 1999; 116: 22-28
        • Suenaert P.
        • Bulteel V.
        • Lemmens L.
        • Noman M.
        • Geypens B.
        • Van Assche G.
        • et al.
        Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease.
        Am J Gastroenterol. 2002; 97: 2000-2004
        • Drago S.
        • El Asmar R.
        • Di Pierro M.
        • Grazia Clemente M.
        • Tripathi A.
        • Sapone A.
        • et al.
        Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.
        Scand J Gastroenterol. 2006; 41: 408-419
        • Fasano A.
        • Not T.
        • Wang W.
        • Uzzau S.
        • Berti I.
        • Tommasini A.
        • et al.
        Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.
        Lancet. 2000; 355: 1518-1519
        • Watts T.
        • Berti I.
        • Sapone A.
        • Gerarduzzi T.
        • Not T.
        • Zielke R.
        • et al.
        Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats.
        Proc Natl Acad Sci U S A. 2005; 102: 2916-2921
        • Sapone A.
        • de Magistris L.
        • Pietzak M.
        • Clemente M.G.
        • Tripathi A.
        • Cucca F.
        • et al.
        Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives.
        Diabetes. 2006; 55: 1443-1449
        • Mazzon E.
        • Sturniolo G.C.
        • Puzzolo D.
        • Frisina N.
        • Fries W.
        Effect of stress on the paracellular barrier in the rat ileum.
        Gut. 2002; 51: 507-513
        • Santos J.
        • Saunders P.R.
        • Hanssen N.P.
        • Yang P.C.
        • Yates D.
        • Groot J.A.
        • et al.
        Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat.
        Am J Physiol Gastrointest Liver Physiol. 1999; 277: G391-G399
        • Santos J.
        • Bayarri C.
        • Saperas E.
        • Nogueiras C.
        • Antolin M.
        • Mourelle M.
        • et al.
        Characterisation of immune mediator release during the immediate response to segmental mucosal challenge in the jejunum of patients with food allergy.
        Gut. 1999; 45: 553-558
        • Santos J.
        • Benjamin M.
        • Yang P.C.
        • Prior T.
        • Perdue M.H.
        Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells.
        Am J Physiol Gastrointest Liver Physiol. 2000; 278: G847-G854
        • Castagliuolo I.
        • Wershil B.K.
        • Karalis K.
        • Pasha A.
        • Nikulasson S.T.
        • Pothoulakis C.
        Colonic mucin release in response to immobilization stress is mast cell dependent.
        Am J Physiol Gastrointest Liver Physiol. 1998; 274: G1094-G1100
        • Bjarnason I.
        • Peters T.J.
        In vitro determination of small intestinal permeability: demonstration of a persistent defect in patients with coeliac disease.
        Gut. 1984; 25: 145-150
        • Schulzke J.D.
        • Bentzel C.J.
        • Schulzke I.
        • Riecken E.O.
        • Fromm M.
        Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue.
        Pediatr Res. 1998; 43: 435-441
        • Wyatt J.
        • Vogelsang H.
        • Hubl W.
        • Waldhoer T.
        • Lochs H.
        Intestinal permeability and the prediction of relapse in Crohn's disease.
        Lancet. 1993; 341: 1437-1439
        • D'Inca R.
        • Di Leo V.
        • Corrao G.
        • Martines D.
        • D'Odorico A.
        • Mestriner C.
        • et al.
        Intestinal permeability test as a predictor of clinical course in Crohn's disease.
        Am J Gastroenterol. 1999; 94: 2956-2960
        • Ventura M.T.
        • Polimeno L.
        • Amoruso A.C.
        • Gatti F.
        • Annoscia E.
        • Marinaro M.
        • et al.
        Intestinal permeability in patients with adverse reactions to food.
        Dig Liver Dis. 2006; 38: 732-736
        • Laudat A.
        • Arnaud P.
        • Napoly A.
        • Brion F.
        The intestinal permeability test applied to the diagnosis of food allergy in pediatrics.
        West Indian Med J. 1994; 43: 87-88
        • Lacaille F.
        • Laurent J.
        • Bousquet J.
        Life-threatening food allergy in a child treated with FK506.
        J Pediatr Gastroenterol Nutr. 1997; 25: 228-229
        • Asante-Korang A.
        • Boyle G.J.
        • Webber S.A.
        • Miller S.A.
        • Fricker F.J.
        Experience of FK506 immune suppression in pediatric heart transplantation: a study of long-term adverse effects.
        J Heart Lung Transplant. 1996; 15: 415-422
        • Granot E.
        • Yakobovich E.
        • Bardenstein R.
        Tacrolimus immunosuppression—an association with asymptomatic eosinophilia and elevated total and specific IgE levels.
        Pediatr Transplant. 2006; 10: 690-693
        • Fisher A.
        • Schwartz M.
        • Mor E.
        • Sheiner P.
        • Emre S.
        • Guy S.
        • et al.
        Gastrointestinal toxicity associated with FK 506 in liver transplant recipients.
        Transplant Proc. 1994; 26: 3106-3107
        • Gabe S.M.
        • Bjarnason I.
        • Tolou-Ghamari Z.
        • Tredger J.M.
        • Johnson P.G.
        • Barclay G.R.
        • et al.
        The effect of tacrolimus (FK506) on intestinal barrier function and cellular energy production in humans.
        Gastroenterology. 1998; 115: 67-74
        • Boyle R.J.
        • Hardikar W.
        • Tang M.L.
        The development of food allergy after liver transplantation.
        Liver Transpl. 2005; 11: 326-330
        • Legendre C.
        • Caillat-Zucman S.
        • Samuel D.
        • Morelon S.
        • Bismuth H.
        • Bach J.F.
        • et al.
        Transfer of symptomatic peanut allergy to the recipient of a combined liver-and-kidney transplant.
        N Engl J Med. 1997; 337: 822-824
        • Chehade M.
        • Nowak-Wegrzyn A.
        • Kaufman S.S.
        • Fishbein T.M.
        • Tschernia A.
        • LeLeiko N.S.
        De novo food allergy after intestinal transplantation: a report of three cases.
        J Pediatr Gastroenterol Nutr. 2004; 38: 545-547
        • Ozdemir O.
        • Arrey-Mensah A.
        • Sorensen R.U.
        Development of multiple food allergies in children taking tacrolimus after heart and liver transplantation.
        Pediatr Transplant. 2006; 10: 380-383
        • Madsen K.L.
        • Yanchar N.L.
        • Sigalet D.L.
        • Reigel T.
        • Fedorak R.N.
        FK506 increases permeability in rat intestine by inhibiting mitochondrial function.
        Gastroenterology. 1995; 109: 107-114
        • Madara J.L.
        • Parkos C.
        • Colgan S.
        • Nusrat A.
        • Atisook K.
        • Kaoutzani P.
        The movement of solutes and cells across tight junctions.
        Ann N Y Acad Sci. 1992; 664: 47-60
        • Liu J.
        • Farmer Jr., J.D.
        • Lane W.S.
        • Friedman J.
        • Weissman I.
        • Schreiber S.L.
        Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes.
        Cell. 1991; 66: 807-815
        • Hall E.J.
        • Batt R.M.
        Abnormal permeability precedes the development of a gluten sensitive enteropathy in Irish setter dogs.
        Gut. 1991; 32: 749-753
        • Li X.M.
        • Schofield B.H.
        • Huang C.K.
        • Kleiner G.I.
        • Sampson H.A.
        A murine model of IgE-mediated cow's milk hypersensitivity.
        J Allergy Clin Immunol. 1999; 103: 206-214
        • Brandt E.B.
        • Strait R.T.
        • Hershko D.
        • Wang Q.
        • Muntel E.E.
        • Scribner T.A.
        • et al.
        Mast cells are required for experimental oral allergen-induced diarrhea.
        J Clin Invest. 2003; 112: 1666-1677
        • Berin M.C.
        • Kiliaan A.J.
        • Yang P.C.
        • Groot J.A.
        • Kitamura Y.
        • Perdue M.H.
        The influence of mast cells on pathways of transepithelial antigen transport in rat intestine.
        J Immunol. 1998; 161: 2561-2566
        • Clayburgh D.R.
        • Shen L.
        • Turner J.R.
        A porous defense: the leaky epithelial barrier in intestinal disease.
        Lab Invest. 2004; 84: 282-291
        • Secondulfo M.
        • de Magistris L.
        • Fiandra R.
        • Caserta L.
        • Belletta M.
        • Tartaglione M.T.
        • et al.
        Intestinal permeability in Crohn's disease patients and their first degree relatives.
        Dig Liver Dis. 2001; 33: 680-685
        • Soderholm J.D.
        • Olaison G.
        • Lindberg E.
        • Hannestad U.
        • Vindels A.
        • Tysk C.
        • et al.
        Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence?.
        Gut. 1999; 44: 96-100
        • Peeters M.
        • Geypens B.
        • Claus D.
        • Nevens H.
        • Ghoos Y.
        • Verbeke G.
        • et al.
        Clustering of increased small intestinal permeability in families with Crohn's disease.
        Gastroenterology. 1997; 113: 802-807
        • Hilsden R.J.
        • Meddings J.B.
        • Sutherland L.R.
        Intestinal permeability changes in response to acetylsalicylic acid in relatives of patients with Crohn's disease.
        Gastroenterology. 1996; 110: 1395-1403
        • Irvine E.J.
        • Marshall J.K.
        Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk.
        Gastroenterology. 2000; 119: 1740-1744
        • Olson T.S.
        • Reuter B.K.
        • Scott K.G.
        • Morris M.A.
        • Wang X.M.
        • Hancock L.N.
        • et al.
        The primary defect in experimental ileitis originates from a nonhematopoietic source.
        J Exp Med. 2006; 203: 541-552
        • Resta-Lenert S.
        • Smitham J.
        • Barrett K.E.
        Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a-/- mice.
        Am J Physiol Gastrointest Liver Physiol. 2005; 289: G153-G162
        • Hugot J.P.
        • Chamaillard M.
        • Zouali H.
        • Lesage S.
        • Cezard J.P.
        • Belaiche J.
        • et al.
        Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.
        Nature. 2001; 411: 599-603
        • Ogura Y.
        • Bonen D.K.
        • Inohara N.
        • Nicolae D.L.
        • Chen F.F.
        • Ramos R.
        • et al.
        A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
        Nature. 2001; 411: 603-606
        • Gitter A.H.
        • Bendfeldt K.
        • Schulzke J.D.
        • Fromm M.
        Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis.
        FASEB J. 2000; 14: 1749-1753
        • Kucharzik T.
        • Walsh S.V.
        • Chen J.
        • Parkos C.A.
        • Nusrat A.
        Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins.
        Am J Pathol. 2001; 159: 2001-2009
        • Zeissig S.
        • Burgel N.
        • Gunzel D.
        • Richter J.
        • Mankertz J.
        • Wahnschaffe U.
        • et al.
        Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease.
        Gut. 2007; 56: 61-72
        • Madara J.L.
        • Stafford J.
        Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers.
        J Clin Invest. 1989; 83: 724-727
        • Mullin J.M.
        • Laughlin K.V.
        • Marano C.W.
        • Russo L.M.
        • Soler A.P.
        Modulation of tumor necrosis factor-induced increase in renal (LLC-PK1) transepithelial permeability.
        Am J Physiol. 1992; 263: F915-F924
        • Madara J.L.
        • Trier J.S.
        Structural abnormalities of jejunal epithelial cell membranes in celiac sprue.
        Lab Invest. 1980; 43: 254-261
        • Smecuol E.
        • Bai J.C.
        • Vazquez H.
        • Kogan Z.
        • Cabanne A.
        • Niveloni S.
        • et al.
        Gastrointestinal permeability in celiac disease.
        Gastroenterology. 1997; 112: 1129-1136
        • van Elburg R.M.
        • Uil J.J.
        • Mulder C.J.
        • Heymans H.S.
        Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease.
        Gut. 1993; 34: 354-357
        • Batt R.M.
        • Carter M.W.
        • McLean L.
        Morphological and biochemical studies of a naturally occurring enteropathy in the Irish setter dog: a comparison with coeliac disease in man.
        Res Vet Sci. 1984; 37: 339-346
        • Lammers K.M.
        • Lu R.
        • Brownley J.
        • Lu B.
        • Gerard C.
        • Thomas K.
        • et al.
        Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.
        Gastroenterology. 2008; 135 (e3): 194-204
        • Clemente M.G.
        • De Virgiliis S.
        • Kang J.S.
        • Macatagney R.
        • Musu M.P.
        • Di Pierro M.R.
        • et al.
        Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.
        Gut. 2003; 52: 218-223
        • Montalto M.
        • Cuoco L.
        • Ricci R.
        • Maggiano N.
        • Vecchio F.M.
        • Gasbarrini G.
        Immunohistochemical analysis of ZO-1 in the duodenal mucosa of patients with untreated and treated celiac disease.
        Digestion. 2002; 65: 227-233
        • Pizzuti D.
        • Bortolami M.
        • Mazzon E.
        • Buda A.
        • Guariso G.
        • D'Odorico A.
        • et al.
        Transcriptional downregulation of tight junction protein ZO-1 in active coeliac disease is reversed after a gluten-free diet.
        Dig Liver Dis. 2004; 36: 337-341
        • Wolters V.M.
        • Wijmenga C.
        Genetic background of celiac disease and its clinical implications.
        Am J Gastroenterol. 2008; 103: 190-195
        • Mooradian A.D.
        • Morley J.E.
        • Levine A.S.
        • Prigge W.F.
        • Gebhard R.L.
        Abnormal intestinal permeability to sugars in diabetes mellitus.
        Diabetologia. 1986; 29: 221-224
        • Carratu R.
        • Secondulfo M.
        • de Magistris L.
        • Iafusco D.
        • Urio A.
        • Carbone M.G.
        • et al.
        Altered intestinal permeability to mannitol in diabetes mellitus type I.
        J Pediatr Gastroenterol Nutr. 1999; 28: 264-269
        • Secondulfo M.
        • Riegler G.
        • De Magistris L.
        • Belletta M.
        • Fiandra R.
        • Caserta L.
        • et al.
        Intestinal permeability assessment before and after ileal pouch-anal anastomosis.
        Minerva Gastroenterol Dietol. 2004; 50: 155-163
        • Secondulfo M.
        • Iafusco D.
        • Carratu R.
        • deMagistris L.
        • Sapone A.
        • Generoso M.
        • et al.
        Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients.
        Dig Liver Dis. 2004; 36: 35-45
        • Neu J.
        • Reverte C.M.
        • Mackey A.D.
        • Liboni K.
        • Tuhacek-Tenace L.M.
        • Hatch M.
        • et al.
        Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes.
        J Pediatr Gastroenterol Nutr. 2005; 40: 589-595
        • Saunders P.R.
        • Kosecka U.
        • McKay D.M.
        • Perdue M.H.
        Acute stressors stimulate ion secretion and increase epithelial permeability in rat intestine.
        Am J Physiol Gastrointest Liver Physiol. 1994; 267: G794-G799
        • Kiliaan A.J.
        • Saunders P.R.
        • Bijlsma P.B.
        • Berin M.C.
        • Taminiau J.A.
        • Groot J.A.
        • et al.
        Stress stimulates transepithelial macromolecular uptake in rat jejunum.
        Am J Physiol Gastrointest Liver Physiol. 1998; 275: G1037-G1044
        • Levenstein S.
        • Prantera C.
        • Varvo V.
        • Scribano M.L.
        • Andreoli A.
        • Luzi C.
        • et al.
        Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission.
        Am J Gastroenterol. 2000; 95: 1213-1220
        • Collins S.M.
        Stress and the gastrointestinal tract IV. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G315-G318
        • Ringel Y.
        • Drossman D.A.
        Psychosocial aspects of Crohn's disease.
        Surg Clin North Am. 2001; 81 (x): 231-252
        • Million M.
        • Tache Y.
        • Anton P.
        Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF.
        Am J Physiol Gastrintest Liver Physiol. 1999; 276: G1027-G1036
        • Qiu B.S.
        • Vallance B.A.
        • Blennerhassett P.A.
        • Collins S.M.
        The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis.
        Nat Med. 1999; 5: 1178-1182
        • Bennett E.J.
        • Tennant C.C.
        • Piesse C.
        • Badcock C.A.
        • Kellow J.E.
        Level of chronic life stress predicts clinical outcome in irritable bowel syndrome.
        Gut. 1998; 43: 256-261