Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan

Published:January 31, 2008DOI:


      Serotonin and histamine are components of human and rodent mast cell secretory granules.


      Serotonin and histamine are stored in the same compartment as serglycin proteoglycan. Here we addressed the possibility that serglycin may be involved in their storage and/or release.


      The storage and release of histamine and serotonin was studied in bone marrow–derived mast cells (BMMCs) and in peritoneal mast cells from wild-type or serglycin–/– mice.


      Both serotonin and histamine storage in BMMCs was positively correlated with the degree of mast cell differentiation, and the amount of stored amine was reduced in serglycin–/– BMMCs compared with wild-type controls. The amounts of histamine/serotonin stored were reflected by the expression levels of histidine decarboxylase and tryptophan hydroxylase 1, respectively. Calcium ionophore activation resulted in serotonin/histamine release both from wild-type and serglycin–/– BMMCs. Interestingly, serotonin release was induced in cells lacking intracellular stores of serotonin, suggesting de novo synthesis. The knockout of serglycin affected the levels of stored and released mast cell serotonin and histamine to an even larger extent in in vivo–derived mast cells than in BMMCs.


      These results establish a previously assumed, but not proven, role of serglycin in storage of histamine and, further, establish for the first time that serotonin storage in mast cells is dependent on serglycin proteoglycan.

      Key words

      Abbreviations used:

      BMMC (Bone marrow–derived mast cell), EIA (Enzyme immunoassay), HDC (Histidine decarboxylase), MC (Mast cell), mMCP (Mouse mast cell protease), qPCR (Quantitative PCR), TPH (Tryptophan hydroxylase), WT (Wild-type)
      To read this article in full you will need to make a payment


        • Galli S.J.
        • Kalesnikoff J.
        • Grimbaldeston M.A.
        • Piliponsky A.M.
        • Williams C.M.
        • Tsai M.
        Mast cells as “tunable” effector and immunoregulatory cells: recent advances.
        Annu Rev Immunol. 2005; 23: 749-786
        • Boyce J.A.
        The role of mast cells in asthma.
        Prostaglandins Leukot Essent Fatty Acids. 2003; 69: 195-205
        • Lee D.M.
        • Friend D.S.
        • Gurish M.F.
        • Benoist C.
        • Mathis D.
        • Brenner M.B.
        Mast cells: a cellular link between autoantibodies and inflammatory arthritis.
        Science. 2002; 297: 1689-1692
        • Chen R.
        • Ning G.
        • Zhao M.L.
        • Fleming M.G.
        • Diaz L.A.
        • Werb Z.
        • et al.
        Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid.
        J Clin Invest. 2001; 108: 1151-1158
        • Secor V.H.
        • Secor W.E.
        • Gutekunst C.A.
        • Brown M.A.
        Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis.
        J Exp Med. 2000; 191: 813-822
        • Sun J.
        • Sukhova G.K.
        • Wolters P.J.
        • Yang M.
        • Kitamoto S.
        • Libby P.
        • et al.
        Mast cells promote atherosclerosis by releasing proinflammatory cytokines.
        Nat Med. 2007; 13: 719-724
        • Coussens L.M.
        • Raymond W.W.
        • Bergers G.
        • Laig-Webster M.
        • Behrendtsen O.
        • Werb Z.
        • et al.
        Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis.
        Genes Dev. 1999; 13: 1382-1397
        • Kushnir-Sukhov N.M.
        • Brown J.M.
        • Wu Y.
        • Kirshenbaum A.
        • Metcalfe D.D.
        Human mast cells are capable of serotonin synthesis and release.
        J Allergy Clin Immunol. 2007; 119: 498-499
        • Stevens R.L.
        • Austen K.F.
        Recent advances in the cellular and molecular biology of mast cells.
        Immunol Today. 1989; 10: 381-386
        • Åbrink M.
        • Grujic M.
        • Pejler G.
        Serglycin is essential for maturation of mast cell secretory granule.
        J Biol Chem. 2004; 279: 40897-40905
        • Kolset S.O.
        • Prydz K.
        • Pejler G.
        Intracellular proteoglycans.
        Biochem J. 2004; 379: 217-227
        • Yurt R.W.
        • Leid Jr., R.W.
        • Spragg J.
        • Austen K.F.
        Immunologic release of heparin from purified rat peritoneal mast cells.
        J Immunol. 1977; 118: 1201-1207
        • Chuang W.L.
        • Christ M.D.
        • Peng J.
        • Rabenstein D.L.
        An NMR and molecular modeling study of the site-specific binding of histamine by heparin, chemically modified heparin, and heparin-derived oligosaccharides.
        Biochemistry. 2000; 39: 3542-3555
        • Rabenstein D.L.
        • Bratt P.
        • Peng J.
        Quantitative characterization of the binding of histamine by heparin.
        Biochemistry. 1998; 37: 14121-14127
        • Mossner R.
        • Lesch K.P.
        Role of serotonin in the immune system and in neuroimmune interactions.
        Brain Behav Immun. 1998; 12: 249-271
        • Henningsson F.
        • Hergeth S.
        • Cortelius R.
        • Åbrink M.
        • Pejler G.
        A role for serglycin proteoglycan in granular retention and processing of mast cell secretory granule components.
        FEBS J. 2006; 273: 4901-4912
        • Pfaffl M.W.
        A new mathematical model for relative quantification in real-time RT-PCR.
        Nucleic Acids Res. 2001; 29: e45
        • Fajardo I.
        • Urdiales J.L.
        • Paz J.C.
        • Chavarria T.
        • Sanchez-Jimenez F.
        • Medina M.A.
        Histamine prevents polyamine accumulation in mouse C57.1 mast cell cultures.
        Eur J Biochem. 2001; 268: 768-773
        • Gurish M.F.
        • Ghildyal N.
        • McNeil H.P.
        • Austen K.F.
        • Gillis S.
        • Stevens R.L.
        Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand.
        J Exp Med. 1992; 175: 1003-1012
        • Pejler G.
        • Abrink M.
        • Ringvall M.
        • Wernersson S.
        Mast cell proteases.
        Adv Immunol. 2007; 95: 167-255
        • Braga T.
        • Grujic M.
        • Lukinius A.
        • Hellman L.
        • Abrink M.
        • Pejler G.
        Serglycin proteoglycan is required for secretory granule integrity in mucosal mast cells.
        Biochem J. 2007; 403: 49-57
        • Theoharides T.C.
        • Kops S.K.
        • Bondy P.K.
        • Askenase P.W.
        Differential release of serotonin without comparable histamine under diverse conditions in the rat mast cell.
        Biochem Pharmacol. 1985; 34: 1389-1398
        • Buckley M.G.
        • Coleman J.W.
        Cycloheximide treatment of mouse mast cells inhibits serotonin release: evidence of a requirement for newly synthesized protein in the exocytotic response.
        Biochem Pharmacol. 1992; 44: 659-664
        • Grujic M.
        • Braga T.
        • Lukinius A.
        • Eloranta M.L.
        • Knight S.D.
        • Pejler G.
        • et al.
        Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage.
        J Biol Chem. 2005; 280: 33411-33418
        • Niemann C.U.
        • Abrink M.
        • Pejler G.
        • Fischer R.L.
        • Christensen E.I.
        • Knight S.D.
        • et al.
        Neutrophil elastase depends on serglycin proteoglycan for localization in granules.
        Blood. 2007; 109: 4478-4486
        • Forsberg E.
        • Pejler G.
        • Ringvall M.
        • Lunderius C.
        • Tomasini-Johansson B.
        • Kusche-Gullberg M.
        • et al.
        Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.
        Nature. 1999; 400: 773-776
        • Humphries D.E.
        • Wong G.W.
        • Friend D.S.
        • Gurish M.F.
        • Qiu W.T.
        • Huang C.
        • et al.
        Heparin is essential for the storage of specific granule proteases in mast cells.
        Nature. 1999; 400: 769-772
        • Levi-Schaffer F.
        • Dayton E.T.
        • Austen K.F.
        • Hein A.
        • Caulfield J.P.
        • Gravallese P.M.
        • et al.
        Mouse bone marrow-derived mast cells cocultured with fibroblasts: morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2.
        J Immunol. 1987; 139: 3431-3441
        • Csaba G.
        • Kovacs P.
        • Buzas E.
        • Mazan M.
        • Pallinger E.
        Serotonin content is elevated in the immune cells of histidine decarboxylase gene knock-out (HDCKO) mice: focus on mast cells.
        Inflamm Res. 2007; 56: 89-92
        • Lovenberg W.
        • Levine R.J.
        • Sjoerdsma A.
        A tryptophan hydroxylase in cell-free extracts of malignant mouse mast cells.
        Biochem Pharmacol. 1965; 14: 887-889
        • Mathiau P.
        • Bakalara N.
        • Aubineau P.
        Tryptophan hydroxylase can be present in mast cells and nerve fibers of the rat dura mater but only mast cells contain serotonin.
        Neurosci Lett. 1994; 182: 133-137
        • Cote F.
        • Thevenot E.
        • Fligny C.
        • Fromes Y.
        • Darmon M.
        • Ripoche M.A.
        • et al.
        Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function.
        Proc Natl Acad Sci U S A. 2003; 100: 13525-13530
        • Patel P.D.
        • Pontrello C.
        • Burke S.
        Robust and tissue-specific expression of TPH2 versus TPH1 in rat raphe and pineal gland.
        Biol Psychiatry. 2004; 55: 428-433
        • Walther D.J.
        • Peter J.U.
        • Bashammakh S.
        • Hortnagl H.
        • Voits M.
        • Fink H.
        • et al.
        Synthesis of serotonin by a second tryptophan hydroxylase isoform.
        Science. 2003; 299: 76