Advertisement

Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3)

      Background

      The mechanisms contributing to clinical immune tolerance remain incompletely understood. This study provides evidence for specific immune mechanisms that are associated with a model of operationally defined clinical tolerance.

      Objective

      Our overall objective was to study laboratory changes associated with clinical immune tolerance in antigen-induced T cells, basophils, and antibodies in subjects undergoing oral immunotherapy (OIT) for peanut allergy.

      Methods

      In a phase 1 single-site study, we studied participants (n = 23) undergoing peanut OIT and compared them with age-matched allergic control subjects (n = 20) undergoing standard of care (abstaining from peanut) for 24 months. Participants were operationally defined as clinically immune tolerant (IT) if they had no detectable allergic reactions to a peanut oral food challenge after 3 months of therapy withdrawal (IT, n = 7), whereas those who had an allergic reaction were categorized as nontolerant (NT; n = 13).

      Results

      Antibody and basophil activation measurements did not statistically differentiate between NT versus IT participants. However, T-cell function and demethylation of forkhead box protein 3 (FOXP3) CpG sites in antigen-induced regulatory T cells were significantly different between IT versus NT participants. When IT participants were withdrawn from peanut therapy for an additional 3 months (total of 6 months), only 3 participants remained classified as IT participants, and 4 participants regained sensitivity along with increased methylation of FOXP3 CpG sites in antigen-induced regulatory T cells.

      Conclusion

      In summary, modifications at the DNA level of antigen-induced T-cell subsets might be predictive of a state of operationally defined clinical immune tolerance during peanut OIT.

      Key words

      Abbreviations used:

      ai-Treg (Antigen-induced regulatory T), APC (Antigen-presenting cell), CD40L (CD40 ligand), CFSE (Carboxyfluorescein succinimidyl ester), DBPCFC (Double-blind, placebo-controlled food challenge), DC (Dendritic cell), FOXP3 (Forkhead box protein 3), IT (Immune tolerant), iTreg (Induced regulatory T), LAG3 (Lymphocyte activation gene 3), MFI (Mean fluorescence intensity), nTreg (Natural regulatory T), ns-Treg (Nonspecific regulatory T), NT (Nontolerant), OFC (Oral food challenge), OIT (Oral immunotherapy), SPT (Skin prick test), Teff (Effector CD4+ T), TR1 (Type 1 regulatory T), Treg (Regulatory T)
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Allergy and Clinical Immunology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • James L.K.
        • Shamji M.H.
        • Walker S.M.
        • Wilson D.R.
        • Wachholz P.A.
        • Francis J.N.
        • et al.
        Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies.
        J Allergy Clin Immunol. 2011; 127: 509-516
        • Akdis C.A.
        • Akdis M.
        • Blesken T.
        • Wymann D.
        • Alkan S.S.
        • Muller U.
        • et al.
        Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro.
        J Clin Invest. 1996; 98: 1676-1683
        • Akdis C.A.
        • Blaser K.
        Role of IL-10 in allergen-specific immunotherapy and normal response to allergens.
        Microbes Infect. 2001; 3: 891-898
        • Chen Y.
        • Kuchroo V.K.
        • Inobe J.
        • Hafler D.A.
        • Weiner H.L.
        Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis.
        Science. 1994; 265: 1237-1240
        • Powrie F.
        • Correa-Oliveira R.
        • Mauze S.
        • Coffman R.L.
        Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity.
        J Exp Med. 1994; 179: 589-600
        • Billingham R.E.
        • Brent L.
        • Medawar P.B.
        Actively acquired tolerance of foreign cells.
        Nature. 1953; 172: 603-606
        • Tanabe S.
        Epitope peptides and immunotherapy.
        Curr Protein Pept Sci. 2007; 8: 109-118
        • Bousquet J.
        • Maasch H.J.
        • Hejjaoui A.
        • Skassa-Brociek W.
        • Wahl R.
        • Dhivert H.
        • et al.
        Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. III. Efficacy and safety of unfractionated and high-molecular-weight preparations in rhinoconjunctivitis and asthma.
        J Allergy Clin Immunol. 1989; 84: 546-556
        • Suko M.
        • Mori A.
        • Ito K.
        • Okudaira H.
        Oral immunotherapy may induce T cell anergy.
        Int Arch Allergy Immunol. 1995; 107: 278-281
        • Rolland J.
        • O'Hehir R.
        Immunotherapy of allergy: anergy, deletion, and immune deviation.
        Curr Opin Immunol. 1998; 10: 640-645
        • Agrawal B.
        • Krantz M.J.
        • Reddish M.A.
        • Longenecker B.M.
        Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2.
        Nat Med. 1998; 4: 43-49
        • Jones S.M.
        • Pons L.
        • Roberts J.L.
        • Scurlock A.M.
        • Perry T.T.
        • Kulis M.
        • et al.
        Clinical efficacy and immune regulation with peanut oral immunotherapy.
        J Allergy Clin Immunol. 2009; 124 (e1-97): 292-300
        • Vickery B.P.
        • Burks W.
        Oral immunotherapy for food allergy.
        Curr Opin Pediatr. 2010; 22: 765-770
        • Mobs C.
        • Slotosch C.
        • Loffler H.
        • Jakob T.
        • Hertl M.
        • Pfutzner W.
        Birch pollen immunotherapy leads to differential induction of regulatory T cells and delayed helper T cell immune deviation.
        J Immunol. 2010; 184: 2194-2203
        • Hellings N.
        • Raus J.
        • Stinissen P.
        T-cell-based immunotherapy in multiple sclerosis: induction of regulatory immune networks by T-cell vaccination.
        Exp Rev Clin Immunol. 2006; 2: 705-716
        • Francis J.N.
        • Till S.J.
        • Durham S.R.
        Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy.
        J Allergy Clin Immunol. 2003; 111: 1255-1261
        • Gardner L.M.
        • Thien F.C.
        • Douglass J.A.
        • Rolland J.M.
        • O'Hehir R.E.
        Induction of T ‘regulatory' cells by standardized house dust mite immunotherapy: an increase in CD4+ CD25+ interleukin-10+ T cells expressing peripheral tissue trafficking markers.
        Clin Exp Allergy. 2004; 34: 1209-1219
        • Ma S.
        • Jevnikar A.M.
        Transgenic rice for allergy immunotherapy.
        Proc Natl Acad Sci U S A. 2005; 102: 17255-17256
        • Kim B.S.
        • Kim I.K.
        • Park Y.J.
        • Kim Y.S.
        • Kim Y.J.
        • Chang W.S.
        • et al.
        Conversion of Th2 memory cells into Foxp3+ regulatory T cells suppressing Th2-mediated allergic asthma.
        Proc Natl Acad Sci U S A. 2010; 107: 8742-8747
        • Jutel M.
        • Akdis C.A.
        Immunological mechanisms of allergen-specific immunotherapy.
        Allergy. 2011; 66: 725-732
        • Akdis M.
        • Verhagen J.
        • Taylor A.
        • Karamloo F.
        • Karagiannidis C.
        • Crameri R.
        • et al.
        Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells.
        J Exp Med. 2004; 199: 1567-1575
        • Fujita H.
        • Soyka M.B.
        • Akdis M.
        • Akdis C.A.
        Mechanisms of allergen-specific immunotherapy.
        Clin Transl Allergy. 2012; 2: 2
        • Burks W.
        • Bannon G.
        • Lehrer S.B.
        Classic specific immunotherapy and new perspectives in specific immunotherapy for food allergy.
        Allergy. 2001; 56: 121-124
        • Umetsu D.T.
        Understanding the immunological basis of asthma; immunotherapy and regulatory T cells.
        Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frank A M. 2006; : 211-216
        • Lal G.
        • Zhang N.
        • van der Touw W.
        • Ding Y.
        • Ju W.
        • Bottinger E.P.
        • et al.
        Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation.
        J Immunol. 2009; 182: 259-273
        • Huehn J.
        • Polansky J.K.
        • Hamann A.
        Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?.
        Nat Rev Immunol. 2009; 9: 83-89
        • Swamy R.S.
        • Reshamwala N.
        • Hunter T.
        • Vissamsetti S.
        • Santos C.B.
        • Baroody F.M.
        • et al.
        Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy.
        J Allergy Clin Immunol. 2012; 130: 215-224.e7
        • Janson P.C.
        • Winerdal M.E.
        • Marits P.
        • Thörn M.
        • Ohlsson R.
        • Winqvist O.
        FOXP3 promoter demethylation reveals the committed Treg population in humans.
        PLoS One. 2008; 3: e1612
        • Nouri-Aria K.T.
        Foxp3 expressing regulatory T-cells in allergic disease.
        Adv Exp Med Biol. 2009; 665: 180-194
        • Verginis P.
        • McLaughlin K.A.
        • Wucherpfennig K.W.
        • von Boehmer H.
        • Apostolou I.
        Induction of antigen-specific regulatory T cells in wild-type mice: visualization and targets of suppression.
        Proc Natl Acad Sci U S A. 2008; 105: 3479-3484
        • Round J.L.
        • Mazmanian S.K.
        Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota.
        Proc Natl Acad Sci U S A. 2010; 107: 12204-12209
        • Moon J.J.
        • Dash P.
        • Oguin 3rd, T.H.
        • McClaren J.L.
        • Chu H.H.
        • Thomas P.G.
        • et al.
        Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells.
        Proc Natl Acad Sci U S A. 2011; 108: 14602-14607
        • Mayer E.
        • Bannert C.
        • Gruber S.
        • Klunker S.
        • Spittler A.
        • Akdis C.A.
        • et al.
        Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter.
        PLoS One. 2012; 7: e29355
        • Levitsky J.
        • Leventhal J.R.
        • Miller J.
        • Huang X.
        • Chen L.
        • Chandrasekaran D.
        • et al.
        Favorable effects of alemtuzumab on allospecific regulatory T-cell generation.
        Hum Immunol. 2012; 73: 141-149
        • Mittag D.
        • Varese N.
        • Scholzen A.
        • Mansell A.
        • Barker G.
        • Rice G.
        • et al.
        TLR ligands of ryegrass pollen microbial contaminants enhance Th1 and Th2 responses and decrease induction of Foxp3(hi) regulatory T cells.
        Eur J Immunol. 2013; 43: 723-733
        • Chattopadhyay P.K.
        • Yu J.
        • Roederer M.
        Live-cell assay to detect antigen-specific CD4+ T-cell responses by CD154 expression.
        Nat Protoc. 2006; 1: 1-6
        • Imai A.
        • Sugita S.
        • Kawazoe Y.
        • Horie S.
        • Yamada Y.
        • Keino H.
        • et al.
        Immunosuppressive properties of regulatory T cells generated by incubation of peripheral blood mononuclear cells with supernatants of human RPE cells.
        Invest Ophthalmol Vis Sci. 2012; 53: 7299-7309
        • Ukena S.N.
        • Hopting M.
        • Velaga S.
        • Ivanyi P.
        • Grosse J.
        • Baron U.
        • et al.
        Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity.
        Exp Hematol. 2011; 39: 1152-1160
        • Miyara M.
        • Yoshioka Y.
        • Kitoh A.
        • Shima T.
        • Wing K.
        • Niwa A.
        • et al.
        Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor.
        Immunity. 2009; 30: 899-911
        • Sakaguchi S.
        • Vignali D.A.
        • Rudensky A.Y.
        • Niec R.E.
        • Waldmann H.
        The plasticity and stability of regulatory T cells.
        Nat Rev Immunol. 2013; 13: 461-467
        • Gagliani N.
        • Magnani C.F.
        • Huber S.
        • Gianolini M.E.
        • Pala M.
        • Licona-Limon P.
        • et al.
        Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells.
        Nat Med. 2013; 19: 739-746
        • Pot C.
        • Apetoh L.
        • Kuchroo V.K.
        Type 1 regulatory T cells (Tr1) in autoimmunity.
        Semin Immunol. 2011; 23: 202-208
        • Fontenot J.D.
        • Gavin M.A.
        • Rudensky A.Y.
        Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.
        Nat Immunol. 2003; 4: 330-336
        • Hori S.
        • Nomura T.
        • Sakaguchi S.
        Control of regulatory T cell development by the transcription factor Foxp3.
        Science. 2003; 299: 1057-1061
        • Thornton A.M.
        • Korty P.E.
        • Tran D.Q.
        • Wohlfert E.A.
        • Murray P.E.
        • Belkaid Y.
        • et al.
        Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells.
        J Immunol. 2010; 184: 3433-3441
        • Himmel M.E.
        • MacDonald K.G.
        • Garcia R.V.
        • Steiner T.S.
        • Levings M.K.
        Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans.
        J Immunol. 2013; 190: 2001-2008
        • Sampson H.A.
        • Muñoz-Furlong A.
        • Bock S.A.
        • Schmitt C.
        • Bass R.
        • Chowdhury B.A.
        • et al.
        Symposium on the definition and management of anaphylaxis: summary report.
        J Allergy Clin Immunol. 2005; 115: 584-591
        • Gernez Y.
        • Tirouvanziam R.
        • Yu G.
        • Ghosn E.E.
        • Reshamwala N.
        • Nguyen T.
        • et al.
        Basophil CD203c levels are increased at baseline and can be used to monitor omalizumab treatment in subjects with nut allergy.
        Int Arch Allergy Immunol. 2011; 154: 318-327
        • Runyon R.S.
        • Cachola L.M.
        • Rajeshuni N.
        • Hunter T.
        • Garcia M.
        • Ahn R.
        • et al.
        Asthma discordance in twins is linked to epigenetic modifications of T cells.
        PLoS One. 2012; 7: e48796
        • Buhring H.J.
        • Streble A.
        • Valent P.
        The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis.
        Int Arch Allergy Immunol. 2004; 133: 317-329
        • Kleine-Tebbe J.
        • Erdmann S.
        • Knol E.F.
        • MacGlashan Jr., D.W.
        • Poulsen L.K.
        • Gibbs B.F.
        Diagnostic tests based on human basophils: potentials, pitfalls and perspectives.
        Int Arch Allergy Immunol. 2006; 141: 79-90
        • Schmetterer K.G.
        • Neunkirchner A.
        • Pickl W.F.
        Naturally occurring regulatory T cells: markers, mechanisms, and manipulation.
        FASEB J. 2012; 26: 2253-2276
        • Bilate A.M.
        • Lafaille J.J.
        Induced CD4+Foxp3+ regulatory T cells in immune tolerance.
        Annu Rev Immunol. 2012; 30: 733-758
        • Josefowicz S.Z.
        • Lu L.F.
        • Rudensky A.Y.
        Regulatory T cells: mechanisms of differentiation and function.
        Annu Rev Immunol. 2012; 30: 531-564
        • Josefowicz S.Z.
        • Niec R.E.
        • Kim H.Y.
        • Treuting P.
        • Chinen T.
        • Zheng Y.
        • et al.
        Extrathymically generated regulatory T cells control mucosal TH2 inflammation.
        Nature. 2012; 482: 395-399
        • Soler D.
        • Chapman T.R.
        • Poisson L.R.
        • Wang L.
        • Cote-Sierra J.
        • Ryan M.
        • et al.
        CCR8 expression identifies CD4 memory T cells enriched for FOXP3+ regulatory and Th2 effector lymphocytes.
        J Immunol. 2007; 177: 6940-6951
        • Sugimoto N.
        • Oida T.
        • Hirota K.
        • Nakamura K.
        • Nomura T.
        • Uchiyama T.
        • et al.
        Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis.
        Int Immunol. 2006; 18: 1197-1209
        • Garcia G.
        • Godot V.
        • Humbert M.
        New chemokine targets for asthma therapy.
        Curr Allergy Asthma Rep. 2005; 5: 155-160
        • Garcia G.
        • Humbert M.
        • Capel F.
        • Rimaniol A.C.
        • Escourrou P.
        • Emilie D.
        • et al.
        Chemokine receptor expression on allergen-specific T cells in asthma and allergic bronchopulmonary aspergillosis.
        Allergy. 2007; 62: 170-177
        • Gonzalo J.A.
        • Qiu Y.
        • Lora J.M.
        • Al-Garawi A.
        • Villeval J.L.
        • Boyce J.A.
        • et al.
        Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1:CCR8 axis.
        J Immunol. 2007; 179: 1740-1750
        • Lloyd C.M.
        • Rankin S.M.
        Chemokines in allergic airway disease.
        Curr Opin Pharmacol. 2003; 3: 443-448
        • Ahern D.
        • Lloyd C.M.
        • Robinson D.S.
        Chemokine responsiveness of CD4+ CD25+ regulatory and CD4+ CD25- T cells from atopic and nonatopic donors.
        Allergy. 2009; 64: 1121-1129
        • Ozdemir C.
        • Kucuksezer U.C.
        • Akdis M.
        • Akdis C.A.
        Specific immunotherapy and turning off the T cell: how does it work?.
        Ann Allergy Asthma Immunol. 2011; 107: 381-392
        • Karlsson M.R.
        • Rugtveit J.
        • Brandtzaeg P.
        Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy.
        J Exp Med. 2004; 199: 1679-1688
        • Bedoret D.
        • Singh A.K.
        • Shaw V.
        • Hoyte E.G.
        • Hamilton R.
        • DeKruyff R.H.
        • et al.
        Changes in antigen-specific T-cell number and function during oral desensitization in cow's milk allergy enabled with omalizumab.
        Mucosal Immunol. 2012; 5: 267-276
        • Nadeau K.C.
        • Schneider L.C.
        • Hoyte L.
        • Borras I.
        • Umetsu D.T.
        Rapid oral desensitization in combination with omalizumab therapy in patients with cow's milk allergy.
        J Allergy Clin Immunol. 2011; 127: 1622-1624
        • Varshney P.
        • Jones S.M.
        • Scurlock A.M.
        • Perry T.T.
        • Kemper A.
        • Steele P.
        • et al.
        A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response.
        J Allergy Clin Immunol. 2011; 127: 654-660
        • Blumchen K.
        • Ulbricht H.
        • Staden U.
        • Dobberstein K.
        • Beschorner J.
        • de Oliveira L.C.
        • et al.
        Oral peanut immunotherapy in children with peanut anaphylaxis.
        J Allergy Clin Immunol. 2010; 126: 83-91.e1
        • Skripak J.M.
        • Nash S.D.
        • Rowley H.
        • Brereton N.H.
        • Oh S.
        • Hamilton R.G.
        • et al.
        A randomized, double-blind, placebo-controlled study of milk oral immunotherapy for cow's milk allergy.
        J Allergy Clin Immunol. 2008; 122: 1154-1160
        • Ohkura N.
        • Hamaguchi M.
        • Morikawa H.
        • Sugimura K.
        • Tanaka A.
        • Ito Y.
        • et al.
        T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.
        Immunity. 2012; 37: 785-799
      1. Garcia M, Kohli A, Nadeau K. Tolerogenic dendritic cells in food allergy and oral immunotherapy. Proceedings of the 29th Meeting of the Collegium Internationale Allergologicum. October 2012, Jeju, Korea.

        • Mellor A.L.
        • Munn D.H.
        IDO expression by dendritic cells: tolerance and tryptophan catabolism.
        Nat Rev Immunol. 2004; 4: 762-774
        • Burks A.W.
        • Jones S.M.
        • Wood R.A.
        • Fleischer D.M.
        • Sicherer S.H.
        • Lindblad R.W.
        • et al.
        Oral immunotherapy for treatment of egg allergy in children.
        N Engl J Med. 2012; 367: 233-243
        • Keet C.
        • Seopaul S.
        • Knorr S.D.
        • Narisety S.
        • Skripak J.M.
        • Wood R.A.
        Long-term outcomes of milk oral immunotherapy in children [abstract].
        J Allergy Clin Immunol. 2013; 131: AB130
        • Sampson H.A.
        Peanut oral immunotherapy: is it ready for clinical practice?.
        J Allergy Clin Immunol In Pract. 2013; 1: 15-21

      References

        • Jones S.M.
        • Pons L.
        • Roberts J.L.
        • Scurlock A.M.
        • Perry T.T.
        • Kulis M.
        • et al.
        Clinical efficacy and immune regulation with peanut oral immunotherapy.
        J Allergy Clin Immunol. 2009; 124 (e1-97): 292-300
        • Sampson H.A.
        • Muñoz-Furlong A.
        • Bock S.A.
        • Schmitt C.
        • Bass R.
        • Chowdhury B.A.
        • et al.
        Symposium on the definition and management of anaphylaxis: summary report.
        J Allergy Clin Immunol. 2005; 115: 584-591
        • Akdis M.
        • Blaser K.
        • Akdis C.A.
        T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases.
        J Allergy Clin Immunol. 2005; 116: 961-969
        • Chattopadhyay P.K.
        • Yu J.
        • Roederer M.
        Live-cell assay to detect antigen-specific CD4+ T-cell responses by CD154 expression.
        Nat Protoc. 2006; 1: 1-6
        • Swamy R.S.
        • Reshamwala N.
        • Hunter T.
        • Vissamsetti S.
        • Santos C.B.
        • Baroody F.M.
        • et al.
        Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy.
        J Allergy Clin Immunol. 2012; 130: 215-224.e7
        • Gernez Y.
        • Tirouvanziam R.
        • Yu G.
        • Ghosn E.E.
        • Reshamwala N.
        • Nguyen T.
        • et al.
        Basophil CD203c levels are increased at baseline and can be used to monitor omalizumab treatment in subjects with nut allergy.
        Int Arch Allergy Immunol. 2011; 154: 318-327