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Abbreviations used

Asthma BRIDGE: Asthma Biorepository for Integrative Genomic

Exploration

CAMP: Childhood Asthma Management Program

ChIP: Chromatin immunoprecipitation

eQTL: Expression quantitative trait locus

eSNP: Expression-associated variant

F13A1: Factor XIII, A1

FADS1: Fatty acid desaturase 1

FADS2: Fatty acid desaturase 2

FAIRE: Formaldehyde-assisted isolation of regulatory

elements

FDR: False discovery rate

GWAS: Genome-wide association study

LD: Linkage disequilibrium

NAGA: N-acetyl-a-D-galactosaminidase

PUFA: Polyunsaturated fatty acid

qPCR: Quantitative PCR

SNP: Single nucleotide polymorphism
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Background: Genome-wide association studies have yet to identify
the majority of genetic variants involved in asthma. We
hypothesized that expression quantitative trait locus (eQTL)
mapping can identify novel asthma genes by enabling
prioritizationofputative functional variants forassociation testing.
Objective: We evaluated 6706 cis-acting expression-associated
variants (eSNPs) identified through a genome-wide eQTL
survey of CD41 lymphocytes for association with asthma.
Methods: eSNPs were tested for association with asthma in 359
asthmatic patients and 846 control subjects from the Childhood
Asthma Management Program, with verification by using
family-based testing. Significant associations were tested for
replication in 579 parent-child trios with asthma from Costa
Rica. Further functional validation was performed by using
formaldehyde-assisted isolation of regulatory elements (FAIRE)
quantitative PCR and chromatin immunoprecipitation PCR in
lung-derived epithelial cell lines (Beas-2B and A549) and Jurkat
cells, a leukemia cell line derived from T lymphocytes.
Results: Cis-acting eSNPs demonstrated associations with
asthma in both cohorts. We confirmed the previously reported
association of ORMDL3/GSDMB variants with asthma
(combined P5 2.93 1028). Reproducible associations were also
observed for eSNPs in 3 additional genes: fatty acid desaturase 2
(FADS2; P 5 .002), N-acetyl-a-D-galactosaminidase (NAGA;
P 5 .0002), and Factor XIII, A1 (F13A1; P 5 .0001).
Subsequently, we demonstrated that FADS2 mRNA is increased
in CD41 lymphocytes in asthmatic patients and that the
associated eSNPs reside within DNA segments with histone
modifications that denote open chromatin status and confer
enhancer activity.
Conclusions: Our results demonstrate the utility of eQTL
mapping in the identification of novel asthma genes and provide
evidence for the importance of FADS2, NAGA, and F13A1 in the
pathogenesis of asthma. (J Allergy Clin Immunol
2014;134:1153-62.)

Key words: Asthma, CD41 lymphocytes, regulatory variants,
expression quantitative trait locus, haplotype, integrative genomics

Genetic factors influence a subject’s asthma susceptibility, with
heritability estimates ranging from 36% to 79%.1 Among the
various genetic mapping techniques used to identify the genetic
determinants of complex diseases, genome-wide association
studies (GWASs) have been most fruitful. Individual studies and
2 meta-analyses2,3 have identified common sequence variants in
at least 10 genes that are consistently associated with asthma
in children and adults, including the Zona pellucida-binding
protein 2 (ZPBPP2), Gasdermin-B (GSDMB), ORM1-like protein
3 (ORMDL3) locus (17q), IL-1 receptor-like 1 (IL1RL1) (2q),
IL33 (9p), and thymic stromal lymphopoietin (TSLP) (5q).
Although some age- and ethnicity-specific trends were noted,
these loci are widely reproducible and represent important ad-
vances in our understanding of asthma. However, as with virtually
all complex diseases, the identified asthma loci explain only a
small proportion of the total estimated genetic risk,4 suggesting
that novel approaches are required to identify other genetic vari-
ants underlying this ‘‘missing heritability.’’

Expression quantitative trait locus (eQTL) mapping seeks to
identify genetic variants that regulate gene expression by
considering the distributions of gene transcript abundance
for thousands of genes (measured by using microarrays) as
individual quantitative traits.5 From more than 20 such studies,
expression-associated variants (eSNPs) have been mapped for
thousands of expressed genes, explaining, on average, 5% to
15% of the observed variation in gene expression. Although
many eSNPs demonstratewidespread effects across diverse tissue
types, tissue-specific patterns are often observed. Importantly, we
and others have demonstrated that compared with random single
nucleotide polymorphisms (SNPs), identified eSNPs are more
likely to be associated with complex disease traits.6,7 In a study
of the HapMap lymphoblastoid cell lines, Nicolae et al6 reported
an approximately 2-fold enrichment for eSNPS among disease-
associated variants. Similarly, in primary peripheral blood
CD41 T cells, we found the prevalence of eSNPS among
disease-associated SNPs was 63% higher than the genome-wide
average.7 These findings suggest that eQTL identification could
be leveraged to prioritize SNPs for association testing and for
localization of functional genetic variants.

Given the central role of the CD41 lymphocyte in allergic re-
sponses and the pathogenesis of asthma,8,9 we hypothesized that
eSNPs identified from CD41 lymphocytes would be enriched for
asthma-susceptibility variants, thus enabling identification of novel
variants and their associated candidate genes from existing GWAS
data. We tested this hypothesis in a study of childhood asthma, the
results of which we report here. Some of the results of this study
have been previously reported in the form of an abstract.10
METHODS
We provide a brief description of the cohorts below, with details shown in

the supplementary text in this article’s Online Repository at www.jacionline.

org. The Institutional Review Board of Brigham and Women’s Hospital

approved these studies. Subject recruitment and procedures for the cohorts

have been previously described.7,11,12
The Childhood Asthma Management Program:

Discovery population
The Childhood AsthmaManagement Program (CAMP) was a multicenter,

randomized, double-blind, placebo-controlled clinical trial established to

investigate the effects of inhaled anti-inflammatory asthma medications.11

http://www.jacionline.org
http://www.jacionline.org


TABLE I. Baseline phenotypic characteristics of index children

in the CAMP and Costa Rican cohorts

Variable CAMP (n 5 359) Costa Rica (n 5 579)

Age (y) 8.8 (2.1) 9.1 (1.8)*

Female sex 137 (38%) 222 (41%)

Height (cm) 132.7 (13.3) 131.0 (11.2)

Baseline prebronchodilator

FEV1 (L)

1.6 (0.5) 1.7 (0.5)

Baseline prebronchodilator

FEV1/FVC ratio (%)

79.1 (8.3) 82.6 (7.2)

FVC, Forced vital capacity.

*Mean (SD) or count (frequency) was reported.
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Children enrolled in CAMP had mild-to-moderate persistent asthma based on

the demonstration of airway responsiveness to methacholine (PC20 <_12.5 mg/

mL) and at least 2 of the following: asthma symptoms at least 2 times per

week, use of an inhaled bronchodilator at least twice weekly, or use of daily

asthma medication for at least 6 months in the year before screening.11

DNAwas available for 403 parent-child trios and an additional 66 singletons

of self-reported non-Hispanic white ancestry withmild-to-moderate persistent

asthma, and therefore 469 self-reported white CAMP subjects were genotyped

with Illumina Infinium II HumanHap 550 or Human610W-Quad BeadChips

(Illumina, San Diego, Calif). Nonasthmatic control subjects were selected

from 1533 subjects in the Illumina’s iControlIDB resource, as previously

described.13 We generated a genetically matched case-control cohort using

genetic matching,14 resulting in a final data set of 359 asthmatic patients

and 846 control subjects and 547,497 SNPs.

In 200 CAMP participants we collected peripheral blood CD41 lympho-

cyte RNA and performed a genome-wide eQTL analysis for cis-acting eSNPs,

as previously described in detail.7 Expression profiling was performed with

the Illumina Human Ref8 v3 array. Similar to observations by others, our prior

eQTL analysis demonstrated a precipitous decrease in the prevalence of cis-

acting eQTLs away from the target gene locus, with a substantial increase

in false discovery rates (FDRs) when considering variants more than 50 kb

from the transcript.6,7 Thus to limit the potential for type I error inflation,

we limited our search space to SNPs with frequencies of 10% or greater situ-

ated within 50 kb of the transcript. This analysis resulted in the identification

of 6706 cis-acting eSNPs regulating 1585 genes.7 Given our prior studies

demonstrating enrichment of susceptibility variants for eSNPs, in this study

we prioritized these 6706 variants for asthma association testing in the

CAMP cohort. An overview of our study design in shown in Fig E1 in this

article’s Online Repository at www.jacionline.org.

CAMP: Asthma susceptibility eSNP association

testing
Case-control asthma association analysis was performed for the

6706 eSNPs detected in CD41 lymphocytes by using PLINK,15 with

EIGENSTRAT adjustment,16 and retested in a subset of 403 available

parent-child trios using PBAT. Haplotype association testing was conducted

with Haploview (for asthma) and haplo.score (for expression traits).

Replication of genetic associations in the Genetic

Epidemiology of Asthma in Costa Rica Cohort
Replication studies were performed in 579 parent-child trios recruited as

part of the Genetic Epidemiology of Asthma in Costa Rica cohort. Details on

subject recruitment and study protocols have been published elsewhere.12 In

brief, children aged 6 to 14 years were included in the study if they had asthma

(a physician’s diagnosis of asthma and >_2 respiratory symptoms or asthma

attacks in the previous year) and a high probability of having 6 or more

great-grandparents born in the Central Valley of Costa Rica, which increased

the likelihood that children would be descendants of the founder population of

the Central Valley.12

Only the variants that demonstrated a nominal association with asthma in

CAMP (P < .01) were tested for association with asthma susceptibility in the

Costa Rican cohort by using family-based methods in PBAT. The transmitted/

untransmitted ratio for the significant associations were identified in PLINK.

Results were considered significant when identical associations (ie, same

allele, phenotype, and direction of genetic effect) were identified in both

populations. The Fisher combined P value method was applied to assess the

cumulative significance of association across populations.17

Validation: Expression of novel asthma genes

between asthmatic patients and nonasthmatic

control subjects in Asthma Biorepository for

Integrative Genomic Exploration
Expression of the fatty acid desaturase 2 (FADS2), N-acetyl-a-D-galacto-

saminidase (NAGA), and Factor XIII, A1 (F13A1), genes was compared
between asthmatic patients (n 5 300) and nonasthmatic control subjects

(n 5 122) based on gene expression profiling in CD41 lymphocytes from

the Asthma Biorepository for Integrative Genomic Exploration (Asthma

BRIDGE). Asthma BRIDGE is a multicenter collaborative effort to develop

well-characterized translational genomic datasets for asthma in North Amer-

ica.18 Samples were collected through October 2011 from among more than

14,000 subjects studied by the EVE Consortium, providing a broad represen-

tation of the North American asthmatic population. Genome-wide gene

expression data (Illumina Human HT-12 v4 array) was generated from

asthma-relevant primary cell types, including peripheral blood CD41 lympho-

cytes. Differential expression of FADS2, NAGA, and F13A1 was determined

by using a linear model adjusted for age, sex, and racewith the limma package

in Bioconductor.19
Functional validation: Chromatin enrichment

studies
Human Beas-2B (no. CRL-9609; ATCC, Manassas, Va) and A549 (no.

CCL-185, ATCC) cells were cultured in complete DMEMmedium, and Jurkat

(TIB-152, ATCC) cells were cultured in RPMI 1640 medium, all of which

were supplemented with 10% FBS, penicillin (50 U/mL), streptomycin (50

mg/mL), and gentamicin (10 mg/mL). Additional details can be found in the

supplemental text in this article’s Online Repository.

For formaldehyde-assisted isolation of regulatory elements (FAIRE) and

chromatin immunoprecipitation (ChIP), followed by real-time PCR, see

details in the supplemental text in this article’s Online Repository. The

sequence of primers used in FAIRE quantitative PCR (qPCR) and

ChIP-qPCR is listed in Table E1 in this article’s Online Repository at www.

jacionline.org.
RESULTS

Asthma association testing of eSNPs
The baseline characteristics of the CAMP and Costa Rican

index cases included in this study are presented in Table I. Base-
line characteristics were similar between the CAMP and Costa
Rican cohorts, including measures of asthma severity and lung
function.

Of the 6706 SNPs identified as CD41 lymphocyte cis-acting
expression-associated eSNPs, 143 were associated with asthma
under an additive genetic model in the CAMP cohort in either
the case-control or family-based association analyses (see Table
E2 in this article’s Online Repository at www.jacionline.org).
To confirm their associations, we next genotyped these 143 vari-
ants in the Costa Rican cohort. Associations were reproduced in
this independent, ethnically distinct cohort for multiple variants
in 4 genes (Table II). First, we were able to replicate the associa-
tion of the chromosome 17q ORMDL3/GSDML locus with
asthma.20 Specifically, 2 variants (rs4795405 and rs7216389)
were strongly associated with asthma in both cohorts (Fisher

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


TABLE II. Replicated associations of eQTLs with asthma susceptibility in the CAMP and Costa Rican cohorts under an additive

genetic model

Test of

association Gene SNP Chromosome

Distance

(kb from transcript) eQTL P value (FDR)

Minor

allele

Association P value

CAMP OR Costa Rica OR

Fisher

combined

P value

Case-control ORMDL3 rs4795405 17 24.6 3.0 3 10210 T .0007 0.73 2 3 1025 0.63 2.9 3 1028

NAGA rs2413669 22 40.8 .0003 C .0009 0.72 .02 0.82 .0002

Family based FADS2 rs174611 11 Promoter .0007 C .009 1.33 .02 1.2 .002

F13A1 rs11243081 6 216.6 .0009 T .003 1.37 .003 1.32 .0001

OR, Odds ratio.

FIG 1. Genome-wide significant eQTLs previously identified in CD41 lymphocytes of asthmatic patients.

A, Association of SNP rs4795405 with ORMDL3 expression. B, Association of SNP rs174611 with FADS2
expression. C, Association of SNP rs2413669 with NAGA expression. D, Association of rs11243081 with

F13A1 expression.
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combined P 5 2.9 3 1028 and 3.4 3 1027, respectively). The T
allele of rs4795405 allele was associated with decreased
ORMDL3 expression (Fig 1, A)7 and confers a decreased risk of
asthma in 2 independent cohorts. As previously reported, these
variants reside on a haplotype that includes rs1293623, a func-
tional regulatory polymorphism that alters DNA-binding



FIG 2. SNP-based eQTL analysis across the FADS2 locus. SNP-based eQTL analysis across FADS2,
demonstrating association of rs968567 with FADS2 expression (P 5 10215, 30% expression variance

explained). SNP rs968567 (blue arrow), which is located in a conserved region of the promoter,

demonstrates association with FADS2 expression (P 5 10215). SNPs rs174627 (green arrow) and rs174611

(red arrow) are in LD with rs968567 and are associated with FADS2 expression and asthma susceptibility.

FIG 3. Haplotype analysis of the FADS2 locus. A, Haplotype structure.

Haplotype frequencies observed in at least 1% of CAMP subjects are listed

to the right of each haplotype sequence. Dots indicate the allele present in

haplotype H1, the most common haplotype. The asthma-associated

rs968567 T allele is unique to and uniquely tags haplotype 2 (H2, boxed
in blue), which is observed at 18.1% frequency. B, Haplotype-based eQTL
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affinity with the insulator CTCF, resulting in differential expres-
sion of 3 surrounding genes: ORMDL3, GSDML, and ZPBP2.21

We also found consistent association in both cohorts for 3 loci
never previously associated with asthma susceptibility: the fatty
acid desaturase locus (fatty acid desaturase 1 [FADS1]/FADS2) on
11q, N-acetyl galactosaminidase (NAGA) on chromosome 22q,
and the F13A1 locus on chromosome 6p. On chromosome
11q12.2, the minor C allele of rs174611 (C) is associated with
increased expression of 2 adjacent members of the fatty acid de-
saturase gene cluster (FADS1 andFADS2; FDR:P5 .001 andP5
.0007, respectively; Fig 1, B). The C allele of this variant confers
an increased risk of asthma in both the CAMP and Costa Rican
cohorts (Fisher combined P 5 .002). On chromosome 22q13.2,
the C allele of SNP rs2413669, which is located approximately
40 kb upstream of the transcription start site of the a-N-acetylga-
lactosaminidase precursor gene (NAGA), was associated with
decreased NAGA expression (FDR: P 5 .0003; Fig 1, C), as
well as with decreased odds of asthma in both cohorts (Fisher
combined P 5 .0002). On chromosome 6p25.1, the T allele of
variant rs11243081 was associated with increased expression of
the coagulation factor F13A1 (FDR: P 5 .0009; Fig 1, D), as
well as with increased asthma susceptibility, in both cohorts
(Fisher combined P 5 .0001). Of note, the magnitudes of the
effect for each of these genetic variants on asthma susceptibility
were similar in both cohorts.
analysis. H2 demonstrates strong association with increased FADS2
expression (P < 10210), whereas haplotype 1 (H1; frequency, 31.4%) is

associated with low FADS2 expression. Other haplotypes (H3-H8) showed

intermediate levels of FADS2 expression.
Haplotype testing of asthma-associated regulatory

loci
Using genome-wide genotypic data available in CAMP sub-

jects, we next tested haplotype blocks for each of the 3 novel
genes identified in this study for association with gene expression
and asthma susceptibility. Fig 2 shows the results of the associa-
tion analyses of the FADS2 locus. SNP rs968567, which is located
in a conserved promoter region of the FADS2 locus, was associ-
ated with FADS2 expression (P 5 10215), explaining 30% of its
variance. In addition, the minor allele of SNP rs174611, which
is associated with asthma in the CAMP and Costa Rican cohorts,
explains 11% of the variance in FADS2 gene expression
(P 5 .0007) and 5.3% of the expression in FADS1 (P 5 .03).
Fig 3, A, shows the haplotype structure of the FADS2 locus.
The Tallele of SNP rs968567 uniquely tags a common haplotype
in block 2 (H2), which is observed in 18.1% of the subjects. SNPs
rs174627 and rs174611 are in linkage disequilibrium (LD) with
SNP rs968567; all 3 of these variants and the FADS H2 haplotype
are associated with asthma susceptibility in the CAMP cohort
(P 5 .001 to 3 3 1024). Furthermore, as seen in Fig 3, B, haplo-
type 2 is associated with increased FADS2 expression



FIG 4. Differential expression of FADS2 in asthmatic patients compared with nonasthmatic control subjects

in Asthma BRIDGE. Significantly increased expression of FADS2 in peripheral blood CD41 lymphocytes of

asthmatic patients compared with nonasthmatic control subjects (P 5 .003) is shown.
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(P 5 10210), suggesting that this is a functional regulatory
haplotype in the FADS region.

In contrast, the genomic region of eQTL association for F13A1
is relatively narrow (see Fig E2 in this article’s Online Repository
at www.jacionline.org), despite its relatively large gene size (177
kb). Although there are 3 haplotype blocks demonstrating eQTL
association (see Table E4 in this article’s Online Repository at
www.jacionline.org), only 1 block (block 9) is strongly associated
with both F13A expression (P 5 .0007) and asthma (P 5 .003).

In the NAGA association analysis the minor allele of SNP
rs2413669 explains 6% of the variation in NAGA expression
(P 5 .0003, see Fig E3 in this article’s Online Repository at
www.jacionline.org). However, unlike the FADS and F13A1
loci, haplotype block analysis did not help localize the functional
variant: haplotype blocks in NAGAwere not significantly associ-
ated with either asthma or NAGA expression (P >_.05), suggesting
the functional regulatory variant likely resides on more than 1
haplotype in LD with the asthma-associated eSNP rs2413669.
Validation: Differential FADS2 expression in

asthmatic patients in Asthma BRIDGE
Having demonstrated that variants that regulate gene expression

in CD41 lymphocytes were reproducibly associated with asthma,
we next assessed whether the expression of target genes was simi-
larly correlated with asthma status. Therefore we assessed the
expression of FADS2,NAGA, and F13A1 in 300 asthmatic patients
and 122 nonasthmatic control subjects participating in Asthma
BRIDGE with available expression data in peripheral blood
CD41 lymphocytes (see Table E3 in this article’s Online Reposi-
tory atwww.jacionline.org for baseline characteristics of the cohort
used for this analysis). Of the 3 genes evaluated, FADS2 mRNA
expression was significantly increased in asthmatic patients
compared with that seen in nonasthmatic control subjects (P 5
.003, Fig 4). FADS1 expression was also modestly increased in
asthmatic patients compared with that seen in control subjects
(P 5 .04), and a trend toward increased NAGA expression was
also observed in asthmatic patients (P 5 .05). There was no evi-
dence of asthma-related differential expression ofF13A1 (P5.60).

Functional validation: Open chromatin enrichment

studies
The expression-associated regulatory variants identified by

using eQTL mapping are often surrogates for functional regula-
tory variation situated in neighboring regulatory DNA re-
gions.22,23 However, given that the FADS2 rs968567 regulatory
variant uniquely tags the asthma-associated H2 haplotype and
the NAGA rs2413669 variant (but not NAGA haplotypes) is asso-
ciated with asthma and NAGA expression, it is possible that these
2 disease-associated eSNPs are not merely surrogates or tagging
variants but actually represent the functional variants regulating
target gene expression, thus driving the asthma association. To
assess this, we first screened for active regulatory activity at the
3 loci using FAIRE-qPCR, a method used to detect open chro-
matin regions devoid of nucleosomes.24 Given that the eQTL
analysis was performed in CD41 T cells, we chose the Jurkat
acute T-cell leukemia cell line in addition to 2 respiratory epithe-
lial cell lines: Beas-2B (human bronchial epithelial cells) and
A549 (human alveolar type II-like pneumocyte). Three SNPs
that showed association with asthma in each region were chosen
for open chromatin assessments in these cell lines. As shown in
Fig 5, the FADS2-associated SNP rs968567 showed approxi-
mately 15-fold enrichment of FAIRE signals in A549 and Jurkat
cells and approximately 5-fold enrichment in Beas-2B cells
compared with the negative control region (P < .01, unpaired t
test), which is consistent with the previous finding that
rs968567 is a functional SNP with differential binding to the tran-
scription factor ETS domain-containing protein Elk-1 (ELK-1).25

Furthermore, in the NAGA association region we observed strong
enrichment of FAIRE signals near rs1801311 in Jurkat cells, as
well as in Beas-2B and A549 cells. In contrast, FAIRE signals
in SNPs around the F13A1 region were relatively weak, suggest-
ing these SNPs are not themselves functional but rather tag the
causal variants within block 9.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 5. Functional annotation of the 3 asthma-associated regions by using FAIRE-PCR analysis. FAIRE was

performed at 3 association regions near the FADS2,NAGA, and F13A genes in the Beas-2B, A549, and Jurkat

cell lines by using real-time PCR analysis. The graph depicts the relative FAIRE signal at each locus normal-

ized to input and negative control regions. Each locus contains 3 SNPs near eQTL signals. Means6 SDs are

from 2 to 4 repeats for each SNP. **P < .01, unpaired 1-way t test.

FIG 6. Enrichment of active histone marks in 2 asthma-associated regions detected by using ChIP-PCR

analysis. ChIP was performedwith H3K4Me1 and H3K27Ac antibodies in Beas-2B, A549, and Jurkat cell lines

targeting genomic regions near 2 SNPs, rs968567 and rs1801311, in FADS2 andNAGA loci, respectively. IgG

was used as a negative control. Bars represent the average of 2 biological replicates with SDs. *P < .05 and

**P < .01, paired 1-way t test.
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Epigenetic modifications on histone tails of nucleosomes
usually indicate active or repressive transcriptional regulations.26

To further confirm our finding about potential regulatory SNPs
indicated by using FAIRE, we applied ChIP-PCR with antibodies
targeting 2 enhancer markers, H3K4Me1 (indicating enhancer re-
gions) and H3K27Ac (indicating active enhancer regions, pro-
moter regions, or both), in the FADS2 and NAGA regions in
Beas-2B, A549, and Jurkat cells (Fig 6). Consistent with FAIRE
enrichment signals, H3K27Ac showed significant enrichment at 2
SNPs we tested in FADS2 and NAGA regions in all 3 cell lines,
indicating active regulatory elements are contained in both the
NAGA and FADS2 regions near eSNPs.
DISCUSSION
Although GWASs of complex traits have offered insight into

the genetic underpinnings of complex diseases, such as asthma,
the discovered variants explain only a fraction of the genetic
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contribution to such diseases.4 In part this is likely due to the
stringent multiple-comparison burden imposed when testing
millions of (mostly functionless) variants. Strategies that guide
prioritization of functional genetic markers for testing can
address this issue. We and others have demonstrated that eSNPs
are more likely to be disease-associated variants,6,7 suggesting
eQTL mapping as a promising strategy. Using asthma as a
model, we sought to evaluate this possibility by testing cis-
acting regulatory variants previously identified from an eQTL
mapping study of peripheral blood CD41 lymphocytes for asso-
ciation with asthma in 2 well-characterized populations. Using
this integrative genomic approach in CAMP subjects, we have
not only replicated the association of the 17q ORMDL3/GSDMB
locus for association with asthma in 2 childhood asthma cohorts
but have also defined 3 novel candidate loci. These later associ-
ations did not emerge from prior studies because their nominal
association P values were less than the threshold for multiple
comparisons correction. Although our application of a func-
tional prioritization strategy using eQTL data led to consider-
ation and successful independent replication of these loci in
the Costa Rican cohort, supporting application of such strategies
for identification of novel disease candidate genes, they will
require follow-up replication testing to assess whether the re-
sults are generalizable. We also recognize that the relatively
small size of our test and replication cohorts might have pre-
cluded identification of additional asthma variants because of
limits in statistical power. Application of eQTL approaches to
larger populations is warranted. In addition, consideration
should be extended beyond cis-acting regulatory variants once
adequately powered studies identify validated, reproducible
transacting eQTLs.

Of 3 novel genes identified in this study, the greatest
biological and epidemiologic support is provided for FADS2
and the fatty acid desaturase gene cluster on chromosome 11.
The FADS1 and FADS2 genes, respectively, encode for D5-
and D6-desaturase, enzymes that are critical for biosynthesis
of long-chain polyunsaturated fatty acids (PUFAs), which are
the precursors of eicosanoid mediators that are critical to the
development and resolution of allergic inflammation.27,28

PUFAs are synthesized from 2 essential fatty acids: linoleic
acid (18:2n-6) and a-linolenic acid (18:3n-3). Desaturase en-
zymes introduce double bonds between defined carbons of the
fatty acyl chain. D6-desaturase (FADS2) catalyzes the first
rate-limiting step in long-chain PUFA biosynthesis by causing
desaturation of linoleic acid and a-linolenic acid. In our study
we demonstrate association of eSNPs in FADS2 with asthma
in 2 cohorts and localize the most robust associations to a
haplotype-tagging variant, rs968567, situated in the promoter
of FADS2, which is strongly associated with FADS2 (and, to a
lesser degree, FADS1) expression. We also detected increased
expression of FADS2 in peripheral blood CD41 lymphocytes
of asthmatic patients in a large population sample, which is
consistent with increased expression of FADS2 conferred by
asthma risk allele in this locus. In addition, rs968567 demon-
strates strong enrichment for open chromatin status in both
lymphocyte and bronchial epithelial cell lines. In hepatocytes
this same variant exhibits differential binding of the ELK1 tran-
scription factor.25 This variant, and others in strong LD with it,
have been strongly associated with circulating PUFAs,29 total
cholesterol and high-density lipoprotein levels, and omega-3
fatty acid levels.30 Perhaps most pertinent in the context of
asthma pathogenesis, a recent GWAS study in a general popu-
lation sample29 found this FADS2 promoter variant to explain
19% of the population variance in serum levels of arachidonic
acid, the precursor for proinflammatory and anti-inflammatory
prostaglandins and leukotrienes.27

Because of their roles in the production of proinflammatory
and anti-inflammatory eicosanoids and evidence for PUFAs in
the alteration of T-cell antigen presentation,31 others have inves-
tigated the role of FADS1/FADS2 polymorphisms in atopic dis-
ease, with variable results. In one candidate-gene birth cohort
study of 879 children, FADS variants that were associated
with PUFA and arachidonic acid serums levels were also asso-
ciated with increased eczema risk.32 In contrast, these same var-
iants were inversely associated with eczema and allergic rhinitis
in an adult population.33 In addition, recent work by Standl
et al34 demonstrated that genetic variants in the FADS cluster
modify the effects of breast-feeding on the development of
asthma, with the lowest risk noted in children who were exclu-
sively breast-fed for the first 3 months of life. Although the bio-
logic mechanism underlying this association is unclear, the
authors speculate that carriers of the minor allele have lower
fatty acid metabolism and thus less arachidonic acid levels.34

Although replication of these interactions has yet to be reported,
if true, such interactions could represent an important modifier
of our observed associations between FADS2 genotype and
asthma susceptibility, posing greater challenges to replication
in additional populations. Although none of these studies
focused exclusively on asthma, making direct comparisons
with our initial observations difficult, assuming a direct correla-
tion between asthma and risk for other atopic diseases, our find-
ings are consistent with those in the pediatric cohort, with high
FADS2 expression associated with increased asthma and atopic
risk. The associations might be age dependent (explaining the
different findings in adults) or modified by dietary PUFA intake.
Although these possibilities must be tested in other populations,
the evidence presented here, together with that from prior
studies, supports FADS2 as a biologically plausible asthma
susceptibility gene.

In contrast to FADS2, the roles of NAGA and F13A1 in asthma
pathogenesis are less clear. NAGA is a lysosomal glycohydrolase
that cleaves the a-N-acetylgalactosaminyl moieties from glycol
conjugates. NAGA has been implicated as part of the
carbohydrate-mediated mechanism of mast cell adhesion to the
bronchial epithelium.35 Treatment of mast cells of endo-a-N-acy-
telgalactosaminidase, an enzyme that cleaves disaccharides on
the surface of the mast cell, results in a significant reduction in
mast cell adhesion to bronchial epithelium and changes in airway
responsiveness.35 Moreover, a guinea pig model demonstrated
increased NAGA released from bronchoalveolar macrophages
in animals with increased airways responsiveness after high
ozone exposure.36 Although speculative, given the central role
of macrophages and mast cell degranulation in bronchoconstric-
tion, mucus secretion, and airway inflammation in asthmatic pa-
tients,37 the asthma-associated NAGA eSNP might influence
asthma risk through altered glycohydrolase activity.

F13A1 encodes the a subunit of Factor X111, the last enzyme
generated in the blood coagulation cascade, stabilizing blood
clots by cross-linking fibrin. F13A1 has also been implicated in
the inflammatory cascade and in atopy.38 When stimulated with
dust mite antigen, PBMCs from patients with dust mite allergy
demonstrate increased production of F13A1.39 F13A1 has also
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been implicated as a susceptibility locus for obesity.40 Epidemio-
logic data demonstrate a consistent link between asthma and
obesity,41 with apparent shared genetic determinants.42 How
F13A1 regulatory variation confers susceptibility to asthma and
whether F13A1 represents a shared genetic determinant of both
asthma and obesity remain unclear. In addition to replication in
additional asthmatic populations, further characterization of the
functional effect of these variants inmodel systemswill be needed
to resolve these questions.

Although we have demonstrated the utility of eQTL mapping
for the identification of asthma-susceptibility variants, our studies
were limited in scope, particularly in regard to the narrow focus
on cis-acting regulatory variation in only one cell type: the CD41

lymphocyte. Although this cell type is relevant to allergic
cytokine profiles and asthma, it is only one of many cell types
of potential interest. Given that a substantial proportion of cis-
acting regulatory variants demonstrate tissue-specific effects,
we have likely overlooked some functional variation specific to
other relevant cell types, including antigen-presenting cells, gran-
ulocytes, airway smooth muscle, and bronchial epithelium.
A recent eQTL study in human lung tissue samples provides com-
plementary evidence at the 17q locus, suggesting a potential role
for altered expression of GSDMA, in addition to the altered
ORMDL3 and GSDMB expression, as noted by us and others in
lymphocytic lines.43 Thus we view these initial efforts as the first
step of a more integrative approach to disease gene mapping that
considers eQTL variation across multiple tissue types, in diverse
patient populations, and under disease-relevant environmental ex-
posures and that also considers other functional annotations,
including chromatin modification, CpG methylation differences,
and other epigenetic modifications.44 Such comprehensive,
more holistic approaches, combined with powerful systems-
based analytic tools, should provide a more complete picture of
the genetic landscape in asthmatic patients.

In summary, we provide new evidence in support of FADS2,
NAGA, and F13A1 as asthma susceptibility loci. Similar to vari-
ants previously identified through GWASs and other genetic ap-
proaches, the relatively modest effect sizes conferred by these
loci limit their clinical utility as diagnostic or prognostic markers.
Instead, our observations motivate prioritization of these loci and
their related pathways for further investigation. Of these, we find
the strongest support for a common promoter polymorphism in
the FADS2 gene, which regulates FADS2 expression, is associated
with asthma and allergic phenotypes, and has been previously
shown to be the major genetic determinant of plasma arachidonic
acid levels, the major precursor of asthma-relevant eicosanoids.
Although replication of these associations in additional popula-
tions is warranted, these findings should prompt revisiting this
important pathway as a potential therapeutic asthma target.
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Key messages

d Integrative genomic approaches, including eQTL map-
ping, can be used to prioritize genetic variants for disease
susceptibility testing.

d By using a genome-wide survey of regulatory genetic var-
iants in peripheral blood CD41 lymphocytes sampled
from asthmatic patients, we identified novel asthma sus-
ceptibility loci, including FADS1/FADS2, NAGA, and
F13A1.

d Functional variants can be further localized through a
combination of eQTL mapping with assessments of chro-
matin status and modifications nearby eQTL SNPs.
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